

Porcine Insulin

250 Tubes

Cat. # PI-12K

PORCINE INSULIN RIA KIT 250 TUBES (Cat. # PI-12K)

I.	Intended Use	2
II.	Principles Of Procedure	2
III.	Reagents Supplied	2
IV.	Storage and Stability	3
٧.	Reagent Precautions	3
VI.	Materials Required But Not Provided	4
VII.	Specimen Collection And Storage	4
VIII.	Assay Procedure	5
IX.	Calculations and Transformations	7
Χ.	Interpretation	7
XI.	Normal Fasting Range	7
XII.	Assay Characteristics	8
XIII.	Quality Controls	10
۲IV.	Replacement Reagents	10
XV.	Ordering Information	11
KVI.	References	11

PORCINE INSULIN RIA KIT 250 TUBES (Cat. # PI-12K)

I. **INTENDED USE**

Millipore's Porcine Insulin Radioimmunoassay (RIA) Kit has been developed for the measurement of Porcine Insulin in plasma, serum, or tissue culture media. The tracer is prepared with human insulin. This kit is for research purposes only.

II. PRINCIPLES OF PROCEDURE

In radioimmunoassay, a fixed concentration of labeled tracer antigen is incubated with a constant dilution of antiserum such that the concentration of antigen binding sites on the antibody is limited, for example, only 50% of the total tracer concentration may be bound by antibody. If unlabeled antigen is added to this system, there is competition between labeled tracer and unlabeled antigen for the limited and constant number of binding sites on the antibody. Thus, the amount of tracer bound to antibody will decrease as the concentration of unlabeled antigen increases. This can be measured after separating antibody-bound from free tracer and counting one or the other, or both fractions. A calibration or standard curve is set up with increasing concentrations of standard unlabeled antigen and from this curve the amount of antigen in unknown samples can be calculated. Thus, the four basic necessities for a radioimmunoassay system are: a specific antiserum to the antigen to be measured, the availability of a radioactive labeled form of the antigen, a method whereby antibody-bound tracer can be separated from the unbound tracer, and finally, an instrument to count radioactivity.

The Millipore Porcine Insulin assay utilizes ¹²⁵I-labeled Insulin and a Porcine Insulin antiserum to determine the level of Insulin in serum, plasma or tissue culture media by the double antibody/PEG technique.

III. **REAGENTS SUPPLIED**

Each kit is sufficient to run 250 tubes and contains the following reagents.

Assay Buffer Α.

0.05M Phosphosaline pH 7.4 containing 0.025M EDTA, 0.08% Sodium Azide, and 1% RIA Grade

Quantity: 40 mL/vial Preparation: Ready to use

Porcine Insulin Antibody В.

Guinea Pig anti-Porcine Insulin Serum in Assay Buffer

Quantity: 26 mL/vial Preparation: Ready to use

125 I-Insulin C.

¹²⁵I-Insulin Label, HPLC purified (specific activity 367 μCi/μg)

Lyophilized for stability. Freshly iodinated label contains <5 μCi, <185 kBg calibrated to the 1st Monday of each month.

Quantity: 27 mL/vial upon hydration

Preparation: Contents Lyophilized. Hydrate with entire contents of Label Hydrating Buffer. Allow

to sit at room temperature for 30 minutes, with occasional gentle mixing.

III. REAGENTS SUPPLIED (continued)

D. Label Hydrating Buffer

Assay Buffer containing Normal Guinea Pig IgG as a carrier. Used to hydrate ¹²⁵I-Insulin

Quantity: 27 mL/vial Preparation: Ready to use

E. Human Insulin Standards

Purified Recombinant Human Insulin in Assay Buffer at the following concentration: 200 μU/mL

Quantity: 2 mL/vial Preparation: Ready to use

F. Quality Controls 1 & 2

Purified Recombinant Porcine Insulin in Assay Buffer

Quantity: 1 mL/vial Preparation: Ready to use

G. Precipitating Reagent

Goat anti Guinea Pig IgG Serum, 3% PEG and 0.05% Triton X-100 in 0.05M Phosphosaline, 0.025M EDTA, 0.08% Sodium Azide

Quantity: 260 mL/vial

Preparation: Ready to use; chill to 4° C.

IV. STORAGE AND STABILITY

Refrigerate all reagents between 2 and 8 $^{\circ}$ C for short term storage. For prolonged storage (>2 weeks), freeze at \leq -20 $^{\circ}$ C. Avoid multiple (>5) freeze/thaw cycles. Refer to date on bottle for expiration when stored at \leq -20 $^{\circ}$ C. Do not mix reagents from different kits unless they have the same lot number.

V. REAGENT PRECAUTIONS

A. Radioactive Materials

This radioactive material may be received, acquired, possessed and used only by research personnel or clinical laboratories for in vitro research tests not involving internal or external administration of the material, or the radiation there from, to human beings or animals. Its receipt, acquisition, possession, use and transfer are subject to the regulations of the U. S. Nuclear Regulatory Commission (NRC) or of a State with which the Commission has entered into an agreement for the exercise of regulatory authority.

The following are suggested general rules for the safe use of radioactive material. The customer's Radiation Safety Officer is ultimately responsible for the safe handling and use of radioactive material.

- Wear appropriate personal devices at all times while in areas where radioactive materials are used or stored.
- 2. Wear laboratory coats, disposable gloves, and other protective clothing at all times.
- 3. Monitor hands, shoes, and clothing and immediate area surrounding the work station for contamination after each procedure and before leaving the area.
- 4. Do not eat, drink, or smoke in any area where radioactive materials are stored or used.

V. REAGENT PRECAUTIONS (continued)

- 5. Never pipette radioactive material by mouth.
- 6. Dispose of radioactive waste in accordance with NRC rules and regulations.
- 7. Avoid contaminating objects such as telephones, light switches, doorknobs, etc.
- 8. Use absorbent pads for containing and easily disposing of small amounts of contamination.
- 9. Wipe up all spills immediately and thoroughly and dispose of the contaminated materials as radioactive waste. Inform Radiation Safety Officer.

B. Sodium Azide

Sodium Azide has been added to all reagents as a preservative at a concentration of 0.08%. Although it is at a minimum concentration, sodium azide may react with lead and copper plumbing to form highly explosive metal azides. On disposal, flush with a large volume of water to prevent azide build up.

VI. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Borosilicate glass tubes, 12 x 75 mm. (NOTE: Polypropylene or polystyrene tubes may be used if the investigator finds that the pellet formation is acceptably stable in their system.)
- 2. 100 μL pipet with disposable tips
- 3. 100 μL & 1.0 mL repeating dispenser
- 4. Refrigerated swing bucket centrifuge capable of developing 2,000 3,000xg. (Use of fixed-angle buckets is not recommended.)
- 5. Absorbent paper
- 6. Vortex mixer
- 7. Refrigerator
- 8. Gamma Counter

VII. SPECIMEN COLLECTION AND STORAGE

- 1. A maximum of 100 μ L per assay tube of serum or plasma can be used, although, 50 μ L per assay tube is adequate for most applications. Tissue culture and other media may also be used.
- 2. Care must be taken when using heparin as an anticoagulant, since an excess will provide falsely high values.² Use no more than 10 IU heparin per mL of blood collected.
- 3. Specimens can be stored at 4° C if they will be tested within 24 hours of collection. For longer storage, specimens should be stored at \leq -20 °C. Avoid multiple (>5) freeze/thaw cycles.
- 4. Avoid using samples with gross hemolysis or lipemia.

VIII. ASSAY PROCEDURE Standard Preparation

Use care in opening the Standard vial.

Label six glass tubes 1, 2, 3, 4, 5, and 6. Add 1.0 mL Assay Buffer to each of the six tubes. Prepare serial dilutions by adding 1.0 mL of the 200uU/mL standard to tube 1, mix well and transfer 1.0 mL of tube 1 to tube 2, mix well and transfer 1.0 mL of tube 2 to tube 3, mix well and transfer 1.0 mL of tube 3 to tube 4, mix well and transfer 1.0 mL of tube 5 to tube 6, mix well.

Note: Do not use a Repeater pipette. Change tip for every dilution. Wet tip with Standard before dispensing. Unused portions of standard should be stored at \leq -20 °C. Avoid multiple freeze/thaw cycles.

	Standard Concentration	Volume of Assay Buffer	Volume of Standard
Tube #	uU/mL	to Add	to Add
1	100 uU/mL	1.0 mL	1.0 mL of 200 uU/mL
2	50 uU/mL	1.0 mL	1.0 mL of 100 uU/mL
3	25 uU/mL	1.0 mL	1.0 mL of 50 uU/mL
4	12.5 uU/mL	1.0 mL	1.0 mL of 25 uU/mL
5	6.25 uU/mL	1.0 mL	1.0 mL of 12.5 uU/mL
6	3.125 uU/mL	1.0 mL	1.0 mL of 6.25 uU/mL

For optimal results, accurate pipetting and adherence to the protocol are recommended.

A. Assay Set-Up, Day One

- 1. Pipet 300 μ L of Assay Buffer to the Non-Specific Binding (NSB) tubes (3-4), 200 μ L to Reference (Bo) tubes (5-6), and 100 μ L to tubes 7 through the end of the assay.
- 2. Pipet 100 μL of Standards and Quality Controls in duplicate (see flow chart).
- 3. Pipet 100 μ L of each sample in duplicate. (NOTE: Smaller volumes of sample may be used when Insulin concentrations are anticipated to be elevated or when sample size is limited. Additional Assay Buffer should be added to compensate for the difference so that the volume is equivalent to 100 μ L (e.g., when using 50 μ L of sample, add 50 μ L of Assay Buffer). Refer to Section IX for calculation modification.
- 4. Pipet 100 µL of ¹²⁵I-Insulin to all tubes. Important: For preparation, see Section III, Part C.
- 5. Pipet 100 μL of Porcine Insulin antibody to all tubes except Total Count tubes (1-2) and NSB tubes (3-4).
- 6. Vortex, cover, and incubate overnight (20-24 hours) at 4°C.

B. Day Two

- 7. Add 1.0 mL of cold (4 ℃) Precipitating Reagent to all tubes (except Total Count tubes).
- 8. Vortex and incubate 20 minutes at 4 ℃.
- 9. Centrifuge, 4°C, all tubes [except Total Count tubes (1-2)] for 20 minutes at 2,000-3,000 xg. NOTE: If less than 2,000 xg is used or if slipped pellets have been observed in previous runs, the time of centrifugation must be increased to obtain a firm pellet (e.g., 40 minutes). Multiple centrifuge runs within an assay must be consistent.

$$xg = (1.12 \times 10^{-5}) (r) (rpm)^2$$

r = radial distance in cm (from axis of rotation to the bottom of the tube) rpm = rotational velocity of the rotor

- 10. Immediately decant the supernate of all tubes except Total Count tubes (1-2), drain tubes for at least 15-60 seconds (be consistent between racks), and blot excess liquid from lip of tubes.

 NOTE: Invert tubes only one time. Pellets are fragile and slipping may occur.
- 11. Count all tubes in a gamma counter for 1 minute. Calculate the $\mu U/mL$ of Porcine Insulin in unknown samples using automated data reduction procedures.

Assay Flow Chart

Day One				Day Two				
	Step 1	Step 2-3	Step 4	Step 5	Step 6	Step 7	Step 8	Step 9-11
Tube #	Add Assay Buffer	Add Standard / QC Sample	Add ¹²⁵ l- Insulin Tracer	Add Porcine Insulin Antibody		Add Precipitating Reagent		ets
1,2			100 μl					pelle
3,4	300 μl		100 μΙ			1.0 mL	ပ	ount
5,6	200 μΙ		100 μΙ	100 μΙ	ate	1.0 mL	at 4°	o pu
7,8	100 μΙ	100 μl of 3.125 μU/mL	100 μΙ	100 μΙ	cuba	1.0 mL	ain.	nt, a
9,10	100 μΙ	100 μl of 6.25 μU/mL	100 μΙ	100 μΙ	and Incubate s at 4°C	1.0 mL	9 20	Эеса
11,12	100 μΙ	100 μl of 12.5 μU/mL	100 μΙ	100 μΙ	er, al	1.0 mL	ubate	in., I
13,14	100 μΙ	100 μl of 25 μU/mL	100 μΙ	100 μΙ	t, Cover, and Inc 20-24 hrs at 4°C	1.0 mL	Vortex, and Incubate 20 min. at 4°C	20 m
15,16	100 μΙ	100 μl of 50 μU/mL	100 μΙ	100 μΙ	Vortex, 20	1.0 mL	, and) for
17,18	100 μΙ	100 μl of 100 μU/mL	100 μΙ	100 μΙ	%	1.0 mL	ortex	nt 4°C
19,20	100 μΙ	100 μl of 200 μU/mL	100 μΙ	100 μΙ		1.0 mL)	e əɓr
21,22	100 μΙ	100 μl of QC 1	100 μΙ	100 μΙ		1.0 mL		Centrifuge at 4°C for 20 min., Decant, and Count pellets
23,24	100 μΙ	100 μl of QC 2	100 μΙ	100 μΙ		1.0 mL		ဝီ
25-n	100 μΙ	100 μl of unknown	100 μΙ	100 μΙ		1.0 mL		

IX. CALCULATIONS AND TRANSFORMATIONS

A. Explanation

The calculations for Porcine Insulin can be automatically performed by most gamma counters possessing data reduction capabilities or by independent treatment of the raw data using a commercially available software package. Choose weighted 4-parameter or weighted log/logit for the mathematical treatment of the data. [NOTE: Be certain the procedure used subtracts the NSB counts from each average count, except Total Counts, prior to final data reduction.]

B. Manual Calculation

- 1. Average duplicate counts for Total Count tubes (1-2), NSB tubes (3-4), Total Binding tubes (reference, Bo) (5-6), and all duplicate tubes for standards and samples to the end of the assay.
- 2. Subtract the average NSB counts from each average count (except for Total Counts). These counts are used in the following calculations.
- 3. Calculate the percentage of tracer bound (Total Binding Counts/Total Counts) X 100 This should be 35-50%.
- 4. Calculate the percentage of total binding (%B/Bo) for each standard and sample. %B/Bo = (Sample or Standard/Total Binding) X 100
- 5. Plot the % B/Bo for each standard on the y-axis and the known concentration of the standard on the x-axis using log-log graph paper.
- 6. Construct the reference curve by joining the points with a smooth curve.
- Determine the μU/mL of Porcine Insulin in the unknown samples and controls by interpolation of the reference curve.

[NOTE: When sample volumes assayed differ from 100 μ L, an appropriate mathematical adjustment must be made to accommodate for the dilution factor (e.g., if 50 μ L of sample is used, then calculated data must be multiplied by 2).]

X. INTERPRETATION

A. Acceptance Criteria

- 1. The run will be considered accepted when all Quality Control values fall within the calculated Quality Control Range; if any QC's fall outside the control range, review results with the supervisor.
- 2. If the difference between duplicate results of a sample is >10% CV, repeat the sample.
- 3. The limit of sensitivity for the Porcine Insulin assay is 1.611 μU/mL (100 μL sample size).
- 4. The limit of linearity for the Porcine Insulin assay is 200 μ U/mL (100 μ L sample size). Any result greater than 200 μ U/mL should be repeated on dilution using Assay Buffer as a diluent.

7

XI. NORMAL FASTING RANGE

 $5-15 \mu U/mL$

XII. ASSAY CHARACTERISTICS

A. Sensitivity

The lowest level of insulin that can be detected by this assay is 1.611 μ U/mL when using a 100 μ l sample size.

B. Performance

The following parameters of assay performance are expressed as Mean ± Standard Deviation.

 $\begin{array}{lll} ED_{80} & = & 7 \pm 0.6 \; \mu U/mL \\ ED_{50} & = & 30 \pm 1.2 \; \mu U/mL \\ ED_{20} & = & 126 \pm 3.0 \; \mu U/mL \end{array}$

C. Specificity

The specificity (also known as selectivity) of an analytical test is its ability to selectively measure the analyte in the presence of other like components in the sample matrix.

Porcine Insulin	100%
Human Insulin	100%
Bovine Insulin	90%
Intact Human Proinsulin	38%
Des 31,32 HPI	47%
Des 64,65 HPI	72%
Glucagon	*
Somatostatin	*
Pancreatic Polypeptide	*

^{*} Not Detectable

XII. ASSAY CHARACTERISTICS (continued)

D. Example of Assay Results
 This data is presented as an example only and should not be used in lieu of a standard curve prepared with each assay.

Tube # ID CPM CPM CPM CPM B/Bo μU/mL 1 Totals 16371 2 " 16333 16352 3 NSB 569 4 " 570 570 5 Bo 7537 6 " 7638 7588 7018 Standards 7 3.125 μU/mL 8 6646 6694 6124 87.3 9 6.25 6117 6077 5508 78.5 11 12.5 5156 μU/mL 12 4911 5034 4464 63.6 13 25 μU/mL 14 3728 3861 3291 46.9 15 50 μU/mL 16 2727 μU/mL 16 2721 2724 2155 30.7 17 100 μU/mL 18 1866 1863 1294 18.4 19 200 μU/mL 20 1229 1287 718 10.2 Controls/Unknown 21 QC 1 4903 22 4 4947 4925 4356 62.1 13.48 23 QC 2 2751 24 2754 2753 2183 31.1 49.39 49.39				Ave	Ave Net	%	
1 Totals 16371 2 " 16333 16352 3 NSB 569 4 " 570 570 570 5 Bo 7537	Tube #	ID	CPM			B/Bo	μU/mL
3 NSB 569 4 " 570 570 5 Bo 7537 6 " 7638 7588 7018 Standards 7 3.125 μU/mL 8 6646 6694 6124 87.3 9 6.25 μU/mL 10 6117 6077 5508 78.5 11 12.5 μU/mL 12 4911 5034 4464 63.6 13 25 μU/mL 14 3728 3861 3291 46.9 15 50 μU/mL 16 2721 2724 2155 30.7 17 100 μU/mL 18 1860 1863 1294 18.4 19 200 μU/mL 20 129 1287 718 10.2 Controls/Unknown 21 QC 1 4903 22 4947 4925 4356 62.1 13.48 23 QC 2 2751 24 2753 2183 31.1 49.39	1	Totals	16371				
4 " 570 570 570 5 5 Bo 7537 7638 7588 7018 7018 7638 7588 7018	2	"	16333	16352			
Solution Solution	3	NSB	569				
6 " 7638 7588 7018 Standards 7 3.125 μU/mL 6741 μU/mL 8 6646 6694 6124 87.3 9 6.25 μU/mL 6037 μU/mL 78.5 78.5 11 12.5 μU/mL 5156 μU/mL 78.5 78.5 12 4911 5034 4464 63.6 13 25 μU/mL 3728 3861 3291 46.9 15 50 μU/mL 2727 2724 2155 30.7 17 100 μU/mL 1866 μU/mL 1843 1294 18.4 19 200 μU/mL 1345 μU/mL 20 1229 1287 718 10.2 Controls/Unknown 21 QC 1 4903 4925 4356 62.1 13.48 23 QC 2 2751 2753 2183 31.1 49.39	4	"	570	570			
Standards 7 3.125 μU/mL 6741 μU/mL 8 6646 6694 6694 6124 87.3 9 6.25 μU/mL 6037 μU/mL 10 6117 6077 5508 78.5 11 12.5 μU/mL 12 4911 5034 4464 63.6 13 25 μU/mL 14 3728 3861 3291 46.9 15 50 μU/mL 17 100 μU/mL 18 1866 μU/mL 19 200 μU/mL 129 1287 718 10.2 Controls/Unknown 21 QC 1 4903 22 4947 4925 4356 62.1 13.48 23 QC 2 2751 24 2754 2753 2183 31.1 49.39		Во	7537				
7 3.125 μU/mL 6741	6	"	7638	7588	7018		
μU/mL 6646 6694 6124 87.3 9 6.25 μU/mL 6037	Standard	<u>s</u>					
9 6.25 μU/mL 6037	7		6741				
μU/mL 6117 6077 5508 78.5 11				6694	6124	87.3	
11	9		6037				
μU/mL 5034 4464 63.6 12	10		6117	6077	5508	78.5	
13	11		5156				
μU/mL 3728 3861 3291 46.9 15 50 μU/mL 2727 μU/mL 2724 2155 30.7 16 2721 2724 2155 30.7 17 100 μU/mL 1866 μU/mL 184 184 19 200 μU/mL 1345 μU/mL 129 1287 718 10.2 Controls/Unknown 21 QC 1 4903 4925 4356 62.1 13.48 23 QC 2 2751 2753 2183 31.1 49.39	12		4911	5034	4464	63.6	
15			3993				
μU/mL 2721 2724 2155 30.7			3728	3861	3291	46.9	
17			2727				
μU/mL 1860 1863 1294 18.4 19 200 μU/mL 1345 μU/mL 1229 1287 718 10.2 20 1229 1287 718 10.2	16		2721	2724	2155	30.7	
19 200 μU/mL 1345	17		1866				
μU/mL 1229 1287 718 10.2 Controls/Unknown 21 QC 1 4903 22 4947 4925 4356 62.1 13.48 23 QC 2 2751 2754 2753 2183 31.1 49.39	18		1860	1863	1294	18.4	
Controls/Unknown 21 QC 1 4903 22 4947 4925 4356 62.1 13.48 23 QC 2 2751 2754 2753 2183 31.1 49.39	19		1345				
21 QC 1 4903 22 4947 4925 4356 62.1 13.48 23 QC 2 2751 24 2754 2753 2183 31.1 49.39	20		1229	1287	718	10.2	
22 4947 4925 4356 62.1 13.48 23 QC 2 2751 2754 2753 2183 31.1 49.39							
23 QC 2 2751 24 2754 2753 2183 31.1 49.39		QC 1					
24 2754 2753 2183 31.1 49.39				4925	4356	62.1	13.48
		QC 2					
25-n Unknown			2754	2753	2183	31.1	49.39
	25-n	Unknown					

9

XIII. QUALITY CONTROLS

Good Laboratory Practice (GLP) requires that Quality Control (QC) specimens be run with each standard curve to check the assay performance. Two levels of controls are provided for this purpose. These and any other control materials should be assayed repeatedly to establish mean values and acceptable ranges. Each individual laboratory is responsible for defining their system for quality control decisions and is also responsible for making this system a written part of their laboratory manual. The ranges for Quality Control 1 and 2 are provided on the card insert or can be located at the Millipore website www. millipore.com.

Recommended batch analysis decision using two controls (Westgard Rules):⁴

- 1. When both controls are within ±2 SD. Decision: Approve batch and release analyte results.
- 2. When one control is outside ±2 SD and the second control is within ±2 SD.

 Decision: Hold results, check with supervisor. If no obvious source of error is identified by the below mentioned check of systems, the supervisor may decide to release the results.

Technician check of systems:

- 1. Check for calculation errors
- 2. Repeat standards and controls
- 3. Check reagent solutions
- 4. Check instrument

XIV. REPLACEMENT REAGENTS

Reagent	Cat #
¹²⁵ I-Insulin (<5 μCi, <185 kBq)	9011
Label Hydrating Buffer (27 mL)	LHB-P
Human Insulin Standards (2 mL each)	8014-K
Porcine Insulin Antibody (26 mL)	1012-K
Precipitating Reagent (260 mL)	PR-UV
Quality Control 1 & 2 (1 mL each)	6000-K
Assay Buffer (40 mL)	AB-P

XV. ORDERING INFORMATION

A. To place an order:

For USA Customers:

Please provide the following information to our customer service department to expedite your telephone, fax or mail order:

- 1. Your name, telephone and/or fax number
- 2. Customer account number
- 3. Shipping and billing address
- 4. Purchase order number
- Catalog number and description of product
- 6. Quantity and product size

NOTE: Appropriate license from NRC (or equivalent) must be on file at LINCO before radioactive orders can be shipped.

TELEPHONE ORDERS:

Toll Free US (800) MILLIPORE FAX ORDERS: (636) 441-8050

MAIL ORDERS: Millipore

6 Research Park Drive

St. Charles, Missouri 63304 U.S.A.

For International Customers:

To best serve our international customers, it is Millipore's policy to sell our products through a network of distributors. To place an order or to obtain additional information about Millipore products, please contact your local distributor.

B. Conditions of Sale

All products are for research or manufacturing use only. They are not intended for use in clinical diagnosis or for administration to humans or animals. All products are intended for *in vitro* use only.

C. Material Safety Data Sheets (MSDS)

Material safety data sheets for Millipore products may be ordered by fax or phone. See Section A above for details on ordering.

XVI. REFERENCES

- 1. Morgan, C.R., and Lazarow, A. Immunoassay of insulin: Two antibody system. Plasma insulin levels in normal, subdiabetic and diabetic rats. *Diabetes*. 12: 115-126, 1963.
- 2. Thorell, J.I. Scand. J. Clin. Lab. Invest. 31:187, 1973.
- 3. Feldman, H. and Rodbard, D. "Mathematical Theory of Radioimmunoassay," in: W.D Odell and Doughaday, W.H. (Ed.), <u>Principles of Competitive Protein-Binding Assays</u>. Philadelphia: J.B. Leppincott Company; pp 158-203, 1971.
- 4. Westgard, J.O., et. al. A multi-rule Shewhart chart for quality control in clinical chemistry. *Clin. Chem.* 27:493-501, 1981.