

EDI[™] Human Fetuin-A ELISA Kit

Enzyme Linked ImmunoSorbent Assay (ELISA) for the measurement of Human Fetuin-A Levels in Serum or Tissue Extract

INTENDED USE

This ELISA (enzyme-linked immunosorbent assay) kit is intended for the quantitative determination of human Fetuin-A, also known as alpha-2-HS glycoprotein (AHSG), in serum, plasma, cell culture supernatant, tissue extraction and urine. The measurement of Fetuin-A in serum or plasma aids in the diagnosis of some cancers and genetically inherited deficiencies of this serum protein. This Fetuin-A ELISA kit is for laboratory professional use.

SUMMARY OF PHYSIOLOGY

Fetuin-A, also known as alpha-2-HS glycoprotein, is a 59 kDa glycoprotein that consists of two amino-terminal cystatin domains and a smaller carboxyl-terminal domain. Fetuin-A is synthesized by the liver and secreted into blood stream, where its concentration in adult mammals ranges from 0.5 - 1.0 g/L. Fetuin-A occurs in high serum concentration during fetal life and involves in protease inhibitory activities and development-associated regulation of calcium metabolism and osteogenesis. It accumulates in bones and teeth as a major fraction of noncollagenous bone proteins Biologically, studies have demonstrated that Fetuin-A is the major calcification inhibitor found in circulation, where it interferes with calcium salt precipitation. Recent study has indicated that Fetuin-A level drops in uremic patients on hemodialysis in comparison to normal healthy controls. The low Fetuin-A level in patients with chronic kidney failure strongly associates with a higher cardiovascular mortality. On the other hand, it is demonstrated that a higher than normal serum Fetuin-A in older population associates incident diabetes, which is independent from other markers of insulin resistance. Further, a higher Fetuin-A level may be an independent risk marker of patients with for cardiovascular diseases.

ASSAY PRINCIPLE

This ELISA is designed, developed and produced for the quantitative measurement of human Fetuin-A in serum samples. The assay utilizes the two-site "sandwich" technique with two selected goat anti-human Fetuin-A polyclonal antibodies that bind to different epitopes of human Fetuin-A.

Assay standards, controls and prediluted patient serum samples containing human Fetuin-A is added to microtiter wells of microplate that was coated with a high affinity polyclonal goat anti-human Fetuin-A antibody. After the first incubation period, the antibody on the wall of microtiter well captures human Fetuin-A in the sample and unbound proteins in each microtiter well is washed away. Then a horseradish peroxidase (HRP) conjugated polyclonal anti-human Fetuin-A antibody is added to each microtiter well and a "sandwich" of "capture antibody - human Fetuin-A - HRP conjugated tracer antibody" is formed. The unbound tracer antibody is removed in the subsequent washing step. HRP conjugated tracer antibody bound to the well is then incubated with a substrate solution in a timed reaction and then measured in a spectrophotometric microplate reader. The enzymatic activity of the tracer antibody bound to the Fetuin-A on the wall of the microtiter well is directly proportional to the amount of Fetuin-A in the sample. A standard curve is generated

by plotting the absorbance versus the respective human Fetuin-A concentration for each standard on point-to-point or cubical scales. The concentration of human Fetuin-A in test samples is determined directly from this standard curve.

REAGENTS: Preparation and Storage

This test kit must be stored at $2 - 8^{\circ}$ C upon receipt. For the expiration date of the kit refer to the label on the kit box. All components are stable at $2 - 8^{\circ}$ C until this expiration date.

Prior to use, allow all reagents to come to room temperature. Regents from different kit lot numbers should not be combined or interchanged.

1. Fetuin-A Antibody Coated Microplate (Cat. No. 30010) One microplate with 12 x eight strips (96 wells total) coated with antibody to human Fetuin-A. The plate is framed and sealed in a foil Ziploc bag with a desiccant. This reagent should be stored at $2 - 8^{\circ}$ C and is stable until the expiration date on the kit box.

2. Fetuin-A Tracer Antibody (Cat. No. 30009) One vial containing 0.6 mL concentrated horseradish peroxidase (HRP) conjugated anti-human Fetuin-A tracer antibody in a stabilized protein matrix. This reagent must be diluted with Tracer Antibody Diluent before use. This reagent should be stored at 2 – 8°C and is stable until the expiration date on the kit box.

3. Tracer Antibody Diluent (Cat. No. 30017)

One vial containing 12 mL ready to use Trizma Hydrochloride based buffer as supplied. It should be only used for tracer antibody dilution according to the assay procedures. This reagent should be stored at $2 - 8^{\circ}$ C and is stable until the expiration date on the kit box.

4. Fetuin-A Assay Buffer Concentrate (Cat. No. 10011)

One vial containing 11 mL of concentrated phosphate buffered saline based assay buffer with bovine serum albumin added. This concentrated assay buffer must be diluted 1:10 with distilled or deionized water (11 mL concentrate plus 99 mL distilled water) before use. This reagent should be stored at 2 – 8°C and is stable until the expiration date on the kit box.

5. ELISA Wash Concentrate (Cat. No. 10010)

One bottle contains 20 mL of 30-fold concentrate. Before use the contents must be diluted with 580 mL of distilled water and mix well. Upon dilution this yields a working wash solution containing a surfactant in phosphate buffered saline with a nonazide preservative. The diluted should be stored at room temperature and is stable until the expiration date on the kit box.

6. ELISA HRP Substrate (Cat. No. 10020)

One bottle contains 12 mL of tetramethylbenzidine (TMB) with hydrogen peroxide. This reagent should be stored at 2 - 8°C and is stable until the expiration date on the kit box.

7. ELISA Stop Solution (Cat. No. 10030)

One bottle contains 12 mL of 0.5 M sulfuric acid. This reagent should be stored at 2 - 8°C or room temperature and is stable until the expiration date on the kit box.

Fetuin-A Standards (Cat. No. 30001 - 30005)

Five vials each contains human Fetuin-A in a liquid bovine serum based matrix with a non-azide preservative. Refer to vial for exact concentration for each standard. All the standards should be stored at -20°C or below after the first use with up to 3 freeze cycles.

Fetuin-A Controls (Cat. No. 30007 - 30008) 9.

Two vials each contains human Fetuin-A in a liquid bovine serum based matrix with a non azide preservative. Refer to vials for exact concentration range for each control. Both controls should be store at -20°C or below after the first use with up to 3 freeze cycles.

SAFETY PRECAUTIONS

The reagents must be used in clinical reference laboratory and is intended for in vitro diagnostic use by medical or laboratory professionals only. Source material from which reagents of bovine serum was derived in the contiguous 48 United States. It was obtained only from donor health animals maintained under veterinary supervision and found free of contagious diseases. Wear gloves while performing this assay and handle these reagents as if they are potential infectious. Avoid contact with reagents containing TMB, hydrogen peroxide, or sulfuric acid. TMB may cause irritation to skin and mucous membranes and cause an allergic skin reaction. TMB is a suspected carcinogen. Sulfuric acid may cause severe irritation on contact with skin. Do not get in eyes, on skin, or on clothing. Do not ingest or inhale fumes. On contact, flush with copious amounts of water for at lease 15 minutes. Use Good Laboratory Practices.

MATERIALS REQUIRED BUT NOT PROVIDED

- Precision single channel pipettes capable of delivering 10 1. μL, 25 μL, 100 μL, and 1000 μL.
- Repeating dispenser suitable for delivering 100 µL. 2. 3. Disposable pipette tips suitable for above volume
- dispensing. 4. Disposable 12 x 75 mm or 13 x 100 glass or plastic tubes.
- Disposable plastic 100 mL and 1000 mL bottle with caps. 5.
- Aluminum foil. 6.
- Deionized or distilled water. 7.
- Plastic microtiter well cover or polyethylene film. 8.
- ELISA multichannel wash bottle or automatic (semi-9. automatic) washing system.
- 10. Spectrophotometric microplate reader capable of reading absorbance at 450 nm.

SPECIMEN COLLECTION

Only 10 µL of human serum or plasma is required for human Fetuin-A measurement. No special preparation of individual is necessary prior to specimen collection. Whole blood should be collected and must be allowed to clot for minimum 30 minutes at room temperature before the serum is separated by centrifugation (850 - 1500xg for 10 minutes). The serum should be separated from the clot within three hours of blood collection and transferred to a clean test tube. Serum samples may be stored at -20°C or below until measurement. Avoid repeated more than three times freezing and thawing of specimen.

Twenty four hour urine sample is recommended to be used for the determination of urine Fetuin-A concentration. Spot urine from the second morning urination may be used if strenuous physical activity

shortly before sample collection has been ruled out and polyuric renal dysfunction is not present. Intra-individual day-to-day fluctuations in the concentration of urine proteins caused by diurisis may be reduced by relating to the urinary creatinine concentration.

For cell culture supernatant, tissue extracts, one should serial dilute test sample and measure multiple diluted samples for a more accurate Fetuin-A test result.

ASSAY PROCEDURE

1. Patient Sample Preparation

Patient serum or plasma sample need to be diluted 1:10,000 with assay buffer before being measured.

- (1) Label 2 test tubes (12x75 mm) with 1A and 1B.
- Add 1 mL of assay buffer to each tube (both 1A and 1B). (2)
- Pipet 10 µL of patient serum or plasma sample to tube 1A (3) and mix well (1:100 dilution).
- Pipet 10 µL of diluted patient sample from 1A to tube 1B (4) mix well (1:10,000 dilution).

Note: It is recommended to use a precision/calibrated pipette and careful technique to perform the dilution in order to get precise results! We recommend using Eppendorf Repeat Pipette with 12.5 mL combitip for adding 1 ml assay buffer and don't use 50 mL combitip.

Patient urine sample need to be diluted 1:100 with assay buffer before being measured.

- (1) Label 1 test tubes (12x75 mm) with 1.
- Add 1 mL of assay buffer to each tube. (2)
- (3)Pipet 10 µL of patient urine sample to tube 1 and mix well (1:100 dilution).

Note: If a higher than standard level 5 of Fetuin-A test result is obtained, a further dilution of urine sample (e.g. 1:500) should be measured for reporting a more accurate test result.

2. Reagent Preparation

- (1) Prior to use allow all reagents to come to room temperature. Regents from different kit lot numbers should not be combined or interchanged.
- Fetuin-A Assay Buffer Concentrate and ELISA Wash (2) Concentrate must be diluted to working solution prior use. Please see REAGENTS section for details.

3. Assay Procedure

- (1) Place a sufficient number of antibody coated microwell strips in a holder to run human Fetuin-A standards, controls and unknown samples in duplicate. **Test Configuration** (2)

ROW	STRIP 1	STRIP 2	STRIP 3
Α	STD 1	STD 5	SAMPLE 2
В	STD 1	STD 5	SAMPLE 2
С	STD 2	C 1	SAMPLE 3
D	STD 2	C 1	SAMPLE 3
E	STD 3	C 2	
F	STD 3	C 2	
G	STD 4	SAMPLE 1	
Н	STD 4	SAMPLE 1	

- (3) Add 25 µL of standards, controls and 1:10,000 diluted patient samples into the designated microwell. Note: if urine sample is used, 1:100 diluted urine sample should be used.
- Add 100 µL of assay buffer to each well. (4)
- Mix gently and cover the plate with one plate sealer and (5) also with aluminum foil to avoid exposure to light.
- Incubate the plate at room temperature for 2 hours. Prepare Tracer Antibody Working Solution by 1:21 fold (7)dilution of the Fetuin-A Tracer Antibody with the Tracer

Antibody Diluent. For each strip, it is required to mix 1 mL

of Tracer Antibody Diluent with 50 μL of Fetuin-A Tracer Antibody in a clean test tube.

- (8) Remove the aluminum foil and the plate sealer. Aspirate the contents of each well. Wash each well 5 times by dispensing 350 µL of working wash solution into each well and then completely aspirating the contents. Alternatively, an automated microplate washer can be used.
- (9) Add 100 µL of above diluted tracer antibody working solution to each of the wells.
- (10) Cover the plate with one plate sealer and also with aluminum foil to avoid exposure to light.
- (11) Incubate the plate at room temperature for 30 minutes.
- (12) Remove the aluminum foil and the plate sealer. Aspirate the contents of each well. Wash each well 5 times by dispensing 350 µL of working wash solution into each well and then completely aspirating the contents. Alternatively, an automated microplate washer can be used.
- (13) Add 100 μL of ELISA HRP Substrate into each of the wells.
- (14) Cover the plate with aluminum foil to avoid exposure to light.
- (15) Incubate the plate at room temperature for 20 minutes(16) Remove the aluminum foil. Add 100 µL of ELISA Stop
- Solution into each of the wells. Mix gently. (17) Read the absorbance at 450 nm within 10 minutes in a
- (17) Read the absorbance at 450 nm within 10 minutes in a microplate reader

NOTE: to reduce the background, one can set the instrument to dual wavelength measurement at 450 nm with background wavelength correction set at 595 nm or 620 nm or 630 nm.

PROCEDURAL NOTES

- It is recommended that all standards, controls and unknown samples be assayed in duplicate. The average absorbance reading of each duplicate should be used for data reduction and the calculation of results.
- 2. Keep light sensitive reagents in the original amber bottles.
- Store any unused antibody coated strips in the foil Ziploc bag with desiccant to protect from moisture.
- Careful technique and use of properly calibrated pipetting devices are necessary to ensure reproducibility of the test.
- 5. Incubation times or temperatures other than those stated in this insert may affect the results.
- Avoid air bubbles in the microwell as this could result in lower binding efficiency and higher CV% of duplicate reading
- 7. All reagents should be mix gently and thoroughly prior use. Avoid foaming.

INTERPRETATION OF RESULTS

- 1. Calculate the average absorbance for each pair of duplicate test results.
- Subtract the average absorbance of the STD 1 (0 ng/mL) from the average absorbance of all other readings to obtain corrected absorbance.
- 3. The standard curve is generated by the corrected absorbance of all standard levels on the ordinate against the standard concentration on the abscissa using point-to-point or log-log paper. Appropriate computer assisted data reduction programs may also be used for the calculation of results.

The human serum or plasma Fetuin-A concentrations for the controls and 1:10,000 diluted samples are read directly from the standard curve using their respective corrected absorbance. If log-log graphic paper or computer assisted data reduction program utilizing logarithmic transformation are used, sample having corrected absorbance between the 1 ng/mL standard and the next highest standard should be calculated by the formula:

Corrected absorbance (unknown)

Value of unknown = ______ x Value of the 2nd STD Corrected Absorbance (2nd STD)

EXAMPLE DATA AND STANDARD CURVE

A typical absorbance data and the resulting standard curve from human Fetuin-A ELISA are represented. This curve should not be used in lieu of standard curve run with each assay.

Well	OD 450 nm Absorbance			Results
I.D.	Readings	Average	Corrected	ng/mL
0 ng/mL	0.097 0.099	0.098	0.000	
12.5 ng/mL	0.173 0.185	0.179	0.081	
38 ng/mL	0.364 0.379	0.371	0.273	
120 ng/mL	0.876 0.949	0.913	0.815	
370 ng/mL	2.298 2.325	2.312	2.214	
Control 1	0.471 0.498	0.484	0.386	55.1 ng/mL
Control 2	1.697 1.700	1.690	1.592	258.9 ng/ml

Human Fetuin-A ELISA

EXPECTED VALUES

Seventy normal adult sera were measured with this human Fetuin-A ELISA. The ninety-five percentile normal range was found to be 0.35 to 0.95 g/L with a mean value of 0.57 g/L and a standard deviation of 0.13 g/L.

The 10,000-fold dilution factor must be added to each sample for the original sample Fetuin-A concentration. For example, a 1/10,000 fold diluted sample value is 24.3 ng/mL directly from the standard curve, the original sample Fetuin-A concentration should be

24.3 ng/mL x 10,000 = 243000 ng/mL = 0.243 g/L

LIMITATION OF THE PROCEDURE

- a. The lowest concentration of human Fetuin-A directly measurable is 5.0 ng/mL (assay analytical sensitivity). After back calculation for the 1/10,000 fold dilution of patient serum sample, the assay measures the lowest serum Fetuin-A concentration at 50 µg/mL of original serum sample.
- b. Since there is no Gold Standard concentration available for human Fetuin-A measurement, the values of assay standards were established by diluting a highly purified recombinant human Fetuin-A in a protein matrix.
- c. For unknown sample value read directly from the assay is greater than 350 ng/mL, it is recommend to measure a further diluted sample for more accurate measurement.
- d. If there is not a microplate reader in your laboratory being able to read beyond 2.0 at OD 450 nm, one can just run an assay without the standard level 6 from the standard set.
- e. Bacterial or fungal contamination of serum specimens or reagents, or cross contamination between reagents may cause erroneous results.
- f. Water deionized with polyester resins may inactive the horseradish peroxidase enzyme.

QUALITY CONTROL

To assure the validity of the results each assay should include adequate controls with known Fetuin-A levels. We recommend that all assays include laboratory's own Fetuin-A controls in addition to those provided with this kit.

PERFORMANCE CHARACTERISTICS

Sensitivity

The analytical sensitivity of the human Fetuin-A ELISA as determined by the 95% confidence limit on 20 duplicate determination of zero standard is 5.0 ng/mL.

Linearity

Two human serum samples were diluted with assay buffer and assayed. The results in the value of ng/mL are as follows:

#	DILUTION	OBSERVED VALUE	EXPECTED VALUE	RECOVERY %
1	1:10,000	21.9		
	1:20,000	11.9	11.0	108
	1:40,000	5.3	5.5	96
	1:80,000	2.9	2.7	107
	1:160,000	1.6	1.4	114
2	1:10,000	192		
	1:20,000	99.9	96	104
	1:40,000	45.2	48	94
	1:80,000	22.2	24	93
	1:160,000	13.4	12	112

Precision

The intra-assay precision is validated by measuring two samples in a single assay with 20-replicate determinations.

Mean Fetuin-A Value (ng/mL)	CV (%)
33.6	5.5
121.1	4.8

The inter-assay precision is validated by measuring two samples in duplicate in 12 individual assays.

Mean Fetuin-A Value (ng/mL)	CV (%)
32.4	6.8
123.7	5.7

Recovery

Two patient samples were spiked with various amounts of human Fetuin-A and assayed. The results in the value of ng/mL are as follows:

#	Orig. Value	Amount Spiked	Observed Value	Expected Value	Recovery %
1	33.6	21 63 200	25.1 44.4 120.1	27.3 48.3 116.8	92 92 103
2	121.1	21 63 200	68.9 88.6 157.1	71.1 92.1 160.6	97 96 98

WARRANTY

This product is warranted to perform as described in its labeling and literature when used in accordance with all instructions. Epitope Diagnostics, Inc. DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, and in no event shall Epitope Diagnostics, Inc. be liable for consequential damages. Replacement of the product or refund of the purchase price is the exclusive remedy for the purchaser. This warranty gives you specific legal rights and you may have other rights, which vary from state to state.

REFERENCES

 Schinke T, Amendt C, Trindl A, Poschke O, Muller-Esterl W, Jahnen-Dechent W. The serum protein alpha2-HS glycoprotein/Fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem. 1996 Aug 23;271:20789-96.
Jahnen-Dechent W, Schinke T, Trindl A, Muller-Esterl W, Sablitzky F, Kaiser S, Blessing M. Cloning and targeted deletion of the mouse Fetuin gene. J Biol Chem. 1997 Dec 12;272:31496-503.
Mizuno M, Farach-Carson MC, Pinero GJ, Fujisawa R, Brunn JC, Seyer JM, Bousfield GR, Mark MP, Butler WT. Identification of the rat bone 60K acidic glycoprotein as alpha 2HS-glycoprotein. Bone Miner. 1991 Apr;13:1-21.

4. Price PA, Thomas GR, Pardini AW, Figueira WF, Caputo JM, Williamson MK. Discovery of a high molecular weight complex of calcium, phosphate, Fetuin, and matrix gamma-carboxyglutamic acid protein in the serum of etidronate-treated rats. J Biol Chem. 2002 Feb 8;277:3926-34.

5. Ketteler M, Vermeer C, Wanner C, Westenfeld R, Jahnen-Dechent W, Floege J. Novel insights into uremic vascular calcification: role of matrix Gla protein and alpha-2-Heremans Schmid glycoprotein/Fetuin. Blood Purif. 2002;20:473-476.

6. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Bohm R, Metzger T, Wanner C, Jahnen-Dechent W, Floege J. Association of low Fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet. 2003 Mar 8;361:827-833.

7. Kétteler M, Wanner C, Metzger T, Bongartz P, Westenfeld R, Gladziwa U, Schurgers LJ, Vermeer C, Jahnen-Dechent W, Floege J. Deficiencies of calcium-regulatory proteins in dialysis patients: a novel concept of cardiovascular calcification in uremia. Kidney Int Suppl. 2003 May:S84-87.

8. Schäfer C, Heiss A, Schwarz A, Ralf Westenfeld R, Ketteler M, Floege J, Müller-Esterl W, Schinke T, Jahnen-Dechent W. The serum protein alpha 2-Heremans-Schmid glycoprotein/Fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. 2003 Aug;112(3):357-66.

REFERENCES RELATED TO THIS ASSAY

- Stenvinkel P, Wang K, Qureshi AR, Axelsson J, Pecoits-Filho R, Gao P, Barany P, Lindholm B, Jogestrand T, Heimbürger O, Holmes C, Schalling M, Nordfors L. Low fetuin-A levels are associated with cardiovascular death: Impact of variations in the gene encoding fetuin. Kidney Int. 2005 Jun;67(6):2383-92.
- Wang AY, Woo J, Lam CW, Wang M, Chan IH, Gao P, Lui SF, Li PK, Sanderson JE. Associations of serum fetuin-A with malnutrition, inflammation, atherosclerosis and valvular calcification syndrome and outcome in peritoneal dialysis patients. Nephrol Dial Transplant. 2005 Aug;20(8):1676-85.
- Sato H, Kazama JJ, Wada Y, Kuroda T, Narita I, Gejyo F, Gao P, Yamashita H. Decreased levels of circulating alpha2-Heremans-Schmid glycoprotein/Fetuin-A (AHSG) in patients with rheumatoid arthritis. Intern Med. 2007;46(20):1685-91. Epub 2007 Oct 15.
- Lehtinen AB, Burdon KP, Lewis JP, Langefeld CD, Ziegler JT, Rich SS, Register TC, Carr JJ, Freedman BI, Bowden DW. Association of alpha2-Heremans-Schmid glycoprotein polymorphisms with subclinical atherosclerosis. J Clin Endocrinol Metab. 2007 Jan;92(1):345-52. Epub 2006 Oct 24
- Lim P, Collet JP, Moutereau S, Guigui N, Mitchell-Heggs L, Loric S, Bernard M, Benhamed S, Montalescot G, Randé JL, Guéret P. Fetuin-A is an independent predictor of death after ST-elevation myocardial infarction. Clin Chem. 2007 Oct;53(10):1835-40. Epub 2007 Aug 16
- Ix JH, Wassel CL, Kanaya AM, Vittinghoff E, Johnson KC, Koster A, Cauley JA, Harris TB, Cummings SR, Shlipak MG; Health ABC Study. Fetuin-A and incident diabetes mellitus in older persons. JAMA. 2008 Jul 9;300(2):182-8.
- Ix JH, Wassel CL, Bauer DC, Toroian D, Tylavsky FA, Cauley JA, Harris TB, Price PA, Cummings SR, Shlipak MG; for the Health ABC Study. Fetuin-A and Bone Mineral Density in Older Persons: The Health Aging and Body Composition (Health ABC) Study. J Bone Miner Res. 2008 Nov 18.
- Giulia Bivona, Chiara Bellia, Antonietta Caruso, Daniela Butera, Bruna Lo Sasso, Patrizia Altavilla, Rosa C. Carollo, Gaia Chiarello andMarcello Ciaccio. Low Serum Fetuin A Levels and Cardiovascular Events in End-Stage Renal Disease (ESRD) Patients. Research Journal of Medical Sciences 2 (4): 200-202, 2008
- 9. Mario Cozzolino^a, Andrea Galassi^a, Maria Luisa Biondi^b, Olivia Turri^b, Sergio Papagni^c, Nicola Mongelli^c, Luigi Civita^c, Maurizio Gallieni^a, Diego Brancaccio^a Serum Fetuin-A Levels Link Inflammation and Cardiovascular Calcification in Hemodialysis Patients. *Am J Nephrol* 2006;26:423-429
- G. Metry, P. Stenvinkel, A. R. Qureshi, J. J. Carrero, M. I. Yilmaz, P. Bárány, S. Snaedal, O. Heimbürger, B. Lindholm and M. E. Sulim^{an} Low serum fetuin-A concentration predicts poor outcome only in the presence of inflammation in prevalent haemodialysis patients. European Journal of Clinical Investigation 2008;38(11):804 - 811
- Doris Hendig, Veronika Schulz, Marius Arndt, Christiane Szliska, Knut Kleesiek, and Christian Go⁻⁻ tting1. Role of Serum Fetuin-A, a Major Inhibitor of Systemic Calcification, in Pseudoxanthoma Elasticum. Clin Chem 2006;52:227-234
- 12. G. Marhaug, V. Shah, R. Shroff, H. Varsani, L. R. Wedderburn, C. A. Pilkington and P. A. Brogan. Age-dependent inhibition of ectopic calcification: a possible role for fetuin-A and osteopontin in patients with juvenile dermatomyositis with calcinosis. Rheumatology 2008 47(7):1031-1037
- Marcello Ciaccio, et al. Changes in serum fetuin-A and inflammatory markers levels in end-stage renal disease (ESRD): effect of a single session haemodialysis. Clin Chem Lab Med 2008;46:212–214
- 14. J. J. Carrero, P. Stenvinkel, B. Fellström, A. R. Qureshi, K. Lamb, O. Heimbürger, P. Bárány, K. Radhakrishnan, B. Lindholm, I. Soveri, L. Nordfors & P. G. Shiels. Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. Journal of Internal Medicine 2007; 263(3):302 – 312

- 15. C. Fiore, G. Celotta, G. Politi, L. Di Pino, Z. Castelli, R. Mangiafico, S. Signorelli, P. Pennisi. Association of high alpha2-Heremans–Schmid glycoprotein/fetuin concentration in serum and intima-media thickness in patients with atherosclerotic vascular disease and low bone mass. Atherosclerosis 2007;195:110-115
- 16. Sandro Mazzaferro, Marzia Pasquali, Francesco Pugliese, Giusi Barresi, Iacopo Carbone, Marco Francone, Daniela Sardella, Franco Taggi. Serum Levels of Calcification Inhibition Proteins and Coronary Artery Calcium Score: Comparison between Transplantation and Dialysis. *Am J Nephrol* 2007;27:75-83.

