

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)

Please use only the valid version of the package insert provided with the kit.

1 INTENDED USE

The High Range Porcine Insulin ELISA provides a method for the direct quantitative determination of high porcine insulin levels in serum, plasma and cell cultures, without the need for high dilution of sample.

2 SUMMARY AND EXPLANATION OF THE TEST

Insulin is the principal hormone responsible for the control of glucose metabolism. It is synthesized in the β -cells of the islets of Langerhans as the precursor, proinsulin, which is processed to form C-peptide and insulin. Both are secreted in equimolar amounts into the portal circulation. The mature insulin molecule comprises two polypeptide chains, the A chain and the B chain. The two chains are linked together by two inter-chain disulphide bridges. There is also an intra-chain disulphide bridge in the A chain.

Secretion of insulin is mainly controlled by plasma glucose concentration, and the hormone has a number of important metabolic actions. Its principal function is to control the uptake and utilization of glucose in peripheral tissues via the glucose transporter. This and other hypoglycaemic activities, such as the inhibition of hepatic gluconeogenesis and glycogenolysis are counteracted by the hyperglycaemic hormones including glucagon, epinephrine (adrenaline), growth hormone and cortisol.

Islet cell transplantation has long been considered as a potential cure for type 1 diabetes. The shortage of human donors and difficulty in isolating purified islets from adult human pancreas has drawn the attention to porcine pancreatic islets (1-4). Pig and human insulin are structurally similar, and the regulation of insulin secretion in pigs resembles that of humans. Parameters such as insulin secretion are used to investigate the viability of the transplanted islets (4-6).

3 PRINCIPLE OF THE PROCEDURE

The High Range Porcine Insulin ELISA is a solid phase two-site enzyme immunoassay. It is based on the direct sandwich technique in which two monoclonal antibodies are directed against separate antigenic determinants on the insulin molecule. During incubation, insulin in the sample reacts with peroxidase-conjugated anti-insulin antibodies and anti-insulin antibodies bound to the microtitration well. After a simple washing step that removes unbound enzyme labelled antibody, the bound conjugate is detected by reaction with 3,3′-5,5′-tetramethylbenzidine (TMB). The reaction is stopped by the addition of acid, giving a colorimetric endpoint that can be read spectrophotometrically.

4 WARNINGS AND PRECAUTIONS

The content of this kit and their residues must not be allowed to come into contact with ruminating animal or swine. The Stop Solution in this kit contains 0.5 M H₂SO₄. Follow routine precautions for handling hazardous chemicals. All patient samples should be handled as capable of transmitting infections.

5 MATERIAL REQUIRED BUT NOT PROVIDED

Pipettes for 10, 50, 100, 200 and 1000 μl (repeat pipettes preferred for addition of enzyme conjugate 1X solution, Substrate TMB and Stop Solution)

Beakers and cylinders for reagent preparation

Redistilled water

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)

Plate shaker (The recommended velocity is 700-900 cycles per minute, orbital movement) Microplate washing device Microplate reader (450 nm filter)

6 REAGENTS

The High Range Porcine Insulin ELISA contains reagents for 96 wells, sufficient for 42 samples and one standard curve in duplicate. For larger series of assays, use pooled reagents from packages bearing identical lot numbers. The expiry date for the complete kit is stated on the outer label. The recommended storage temperature is 2-8°C.

Coated Plate	1 plate	96 wells	Ready for use
(mouse monoclonal anti-insulin	n)	8-well strips	
For unused microtiter strips, re-	seal the bag usin	g adhesive tape and s	store at 2-8°C for 2 months.
Calibrators 1- 5	5 vials	1000 μL	Ready for use
Porcine Insulin	1		
Concentration stated on vial lab	oel.		
Calibrator 0	1 vial	5 mL	Ready for use
Colour coded yellow			
Enzyme Conjugate 11 X	1 vial	1.3 mL	Preparation, see below
(Peroxidase conjugated mouse	monoclonal anti	-insulin,	•
Enzyme Conjugate Buffer	1 vial	13 mL	Ready for use
Colour coded blue			
Wash Buffer 21 X	1 bottle	50 mL	Dilute with 1000 ml redistilled water to
Storage after dilution: 2-8°C for 8 weeks.			make wash buffer 1X solution.
Substrate TMB	1 vial	22 mL	Ready for use
Colorless solution. Note! Ligh			
Stop Solution	1 vial	7 mL	Ready for use
0.5 M H ₂ SO ₄	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	,

6.1 Preparation of enzyme conjugate 1X solution

Prepare the needed volume of enzyme conjugate 1X solution by dilution of Enzyme Conjugate 11X, (1+10) in Enzyme Conjugate Buffer or according to the table below. Mix gently.

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)

When preparing enzyme conjugate 1X solution for the whole plate or if the reagents are to be used within two weeks, pour all of the Enzyme Conjugate Buffer into the Enzyme Conjugate 11X vial.

Number of strips	Enzyme Conjugate 11X	Enzyme Conjugate buffer
12 strips	1 vial	1 vial
8 strips	700 μL	7 mL
6 strips	500 μL	5 mL
4 strips	400 μL	4 mL

Storage after dilution: 2 °C to 8 °C for two weeks...

7 SPECIMEN COLLECTION AND HANDLING

Serum and plasma can be used, however, normal physiological levels of insulin in porcine are much lower than the measuring range for the High Range Porcine Insulin ELISA.

Serum

Collect blood by venipuncture, allow to clot and separate the serum by centrifugation. Samples can be stored at 2-8°C up to 24 hours. For longer periods, store samples at -20°C. Avoid repeated freezing and thawing.

Plasma

Collect blood by venipuncture into tubes containing heparin, citrate or EDTA as anticoagulant, and separate the plasma fraction. Samples can be stored at $2-8^{\circ}$ C up to 24 hours. For longer periods store samples at -20° C. Avoid repeated freezing and thawing.

8 PREPARATION OF SAMPLES

Samples containing $>75 \mu g/l$ should be diluted at least 1/10 v/v with Calibrator 0.

Note! Buffers containing sodium azide (NaN₃) can not be used for sample dilution.

9 TEST PROCEDURE

All reagents and samples must be brought to room temperature before use. Perform each determination in duplicate for calibrators and samples. Prepare a calibrator curve for each assay run.

- 1. Prepare enzyme conjugate 1X solution (according to the table on previous page) and wash buffer 1X solution.
- 2. Prepare sufficient microplate wells to accommodate Calibrators and samples in duplicate.
- 3. Pipette 10 µl each of Calibrators and samples into appropriate wells.
- 4. Add 100 μl of enzyme conjugate 1X solution into each well.
- 5. Incubate on a plate shaker (700-900 rpm) for 1 hour at room temperature (18-25°C).

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)

- Wash 6 times with 700 µl wash buffer 1X solution per well using an automatic plate washer with overflow-wash function. Do not include soak step in washing procedure.
 Or manually
 - Discard the reaction volume by inverting the microplate over a sink. Add 350 µl wash buffer 1X solution to each well. Discard the wash solution, tap firmly several times against absorbent paper to remove excess liquid. Repeat 5 times. Avoid prolonged soaking during washing procedure.
- 7. Add 200 µl Subtrate TMB into each well.
- 8. Incubate for 15 minutes at room temperature (18-25°C).
- Add 50 μl Stop Solution to each well.
 Place the plate on the shaker for approximately 5 seconds to ensure mixing.
- 10. Read optical density at 450 nm and calculate results. Read within 30 minutes.

Note! To prevent contamination between the conjugate and substrate, separate pipettes are recommended.

10 INTERNAL QUALITY CONTROL

Commercial controls and/or internal serum pools with low, intermediate and high porcine insulin concentrations should routinely be assayed as samples, and results charted from day to day.

It is good laboratory practice to record the following data for each assay: kit lot number; reconstitution dates of kit components, OD values for the blank, Calibrators and Controls.

11 CALCULATION OF RESULTS

Computerized calculation

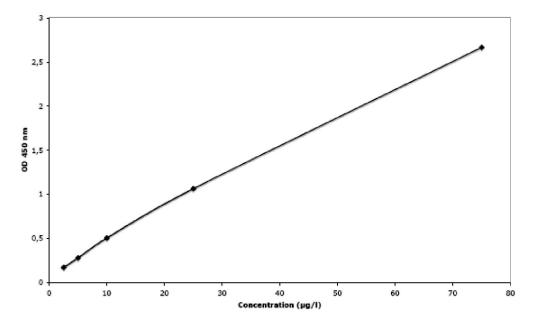
The concentration of porcine insulin is obtained by computerized data reduction of the absorbance for the Calibrators, except Calibrator 0, versus the concentration using cubic spline regression.

Manual calculation

- 1. Plot the absorbance values obtained for the Calibrators, except Calibrator 0, against the Porcine Insulin concentration on a lin-lin paper and construct a calibrator curve.
- 2. Read the concentration of the samples from the calibrator curve.

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)


Example of results

_			
Wells	Identity	A ₄₅₀	Mean conc. μg/L
1A-B	Calibrator 0	0.055/0.054	
1C-D	Calibrator 1*	0.173/0.174	
1E–F	Calibrator 2*	0.278/0.283	
1G–H	Calibrator 3*	0.499/0.513	
2A-B	Calibrator 4*	1.078/1.054	
2C-D	Calibrator 5*	2.642/2.691	
2E-F	Sample 1	0.338/0.337	6.282
2G–H	Sample 2	1.237/1.230	29.945
3A-B	Sample 3	2.095/2.132	57.578

^{*}Concentration stated on vial label.

Example of calibrator curve

A typical calibrator curve is shown here. Do not use this curve to determine actual assay results.

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)

12 LIMITATIONS OF THE PROCEDURE

Grossly lipemic, icteric or hemolyzed samples do not interfere in the assay. Insulin is, however, degraded over time in haemolysed samples. The degradation could give falsely low values and contributes to higher inter-assay variation.

13 EXPECTED VALUES

Good practice dictates that each laboratory establishes its own expected range of values.

14 PERFORMANCE CHARACTERISTICS

14.1 Detection limit

Detection limit is defined as the Capability of Detection according to ISO11843-Part 1. Capability of Detection should be seen as part of a method validation, rather than the lowest concentration that can be measured.

The detection limit is 0.313 (µg/l) as determined with the methodology described in ISO11843-Part 4.

Concentration of samples with absorbance below Calibrator 1 should not be calculated, instead expressed as less or equal to (\leq) the concentration indicated on the vial for Calibrator 1.

14.2 Hook effect

Samples with a concentration of up to 11 500 μg/l can be measured without giving falsely low results.

14.3 Precision

Each sample was analyzed in 2 replicates on 35 different occasions.

		Coefficient of variation			
Sample	Mean value	within assay	between assay	total assay	
Sample	μg/L	%	%	%	
1	6.334	2.2	4.9	5.1	
2	57.194	1.8	3.6	3.8	

14.4 Specificity

The following cross reactions have been found:

 $\begin{array}{lll} \mbox{Porcine C-peptide} & <0.001~\% \\ \mbox{Porcine Proinsulin} & <0.2~\% \\ \mbox{Human Insulin} & 28\% \\ \mbox{Human C-peptide} & <0.01~\% \\ \mbox{Human Proinsulin} & <0.1~\% \\ \mbox{Aspart (NovoRapid)} & 0.7~\% \\ \end{array}$

Detemir (Levemir) < 0.0000002 %

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)

Glargin (Lantus) 5,4 %

Lispro (Humalog) < 0.0000006 %

15 CALIBRATION

The High Range Porcine Insulin ELISA is calibrated against an in-house reference preparation of Porcine Insulin.

16 WARRANTY

The performance data presented here was obtained using the procedure indicated. Any change or modification in the procedure not recommended by DRG may affect the results, in which event DRG disclaims all warranties expressed, implied or statutory, including the implied warranty of merchantability and fitness for use.

DRG and its authorized distributors, in such event, shall not be liable for damages indirect of consequential.

17 REFERENCES / LITERATURE

- Bogdani M, Suenens K, Bock T, Pipeleers-Marichal M, In't Veld P, Pipeleers D (2005) Growth and Functional Maturation of beta-cells in Implants of Endocrine Cells Purified From Prenatal Porcine Pancreas. Diabetes 54:3387-3394
- 2. Dufrane D, D'hoore W, Goebbles RM, Saliez A, Guiot Y, Gianello P (2006) Parameters favouring successful adult pig islet isolations for xenotransplantation in pig-to-primate models. Xenotransplantation 13:204-214
- 3. Groth CG, Tibell A, Wennberg L, Bennet W, Lundgren T, Rydgård KJ, Lundin S, Lindeborg E, Korsgren O (2000) Clinical aspects and perspectives in islet xenotransplantation.
- 4. J Hepatobiliary Pancreat Surg 7:364-369
- 5. Korsgren O, Jansson L, Eizirik D, Andersson A (1991) Functional and morphological differentiation of fetal porcine islet-like cell clusters after transplantation into nude mice. Diabetologia 34:379-386
- 6. Martinez-Puig D, Mourot J, Ferchaud-Roucher V, Anguita M, Garcia F, Krempf M, Pérez, JF (2006) Consumtion of resistant starch decreases lipogenesis in adipose tissues but not in muscular tissues of growing pigs. Livestock Science 99:237-247
- 7. Ramsay TG, Bush JA, McMurtry JP, Thivierge MC, Davis TA (2004) Peripheral leptin administration alters hormone and metabolite levels in the young pig. Comp Biochem Physiol 138:17-25

For Veterinary Use

As of 20 Apr. 2010 rm (Vers. 1.0)

18 SUMMARY OF PROTOCOL SHEET

Add Calibrators, controls and samples	10 μΙ	
Add enzyme conjugate 1X solution	100 μΙ	
Incubate	1 hour at 18-25°C on a plate shaker	
Wash plate with wash buffer 1X solution	6 times	
Add Substrate TMB	200 μΙ	
Incubate	15 minutes at 18-25°C	
Add Stop Solution	50 μl	
Add Stop Solution	Shake for 5 seconds to ensure mixing	
Measure A ₄₅₀	Evaluate results	

SYMBOLS USED WITH DRG ASSAYS

Symbol	English	Deutsch	Français	Español	Italiano
[]i	Consult instructions for use	Gebrauchsanweisung beachten	Consulter les instructions d'utilisation	Consulte las instrucciones de uso	Consultare le istruzioni per l'uso
((European Conformity	CE-Konfirmitäts- kennzeichnung	Conformité aux normes européennes	Conformidad europea	Conformità europea
IVD	In vitro diagnostic device	In-vitro-Diagnostikum	Usage Diagnostic in vitro	Para uso Diagnóstico in vitro	Per uso Diagnostica in vitro
RUO	For research use only	Nur für Forschungszwecke	Seulement dans le cadre de recherches	Sólo para uso en investigación	Solo a scopo di ricerca
REF	Catalogue number	Katalog-Nr.	Numéro de catalogue	Número de catálogo	Numero di Catalogo
LOT	Lot. No. / Batch code	Chargen-Nr.	Numéro de lot	Número de lote	Numero di lotto
\sum	Contains sufficient for <n> tests/</n>	Ausreichend für "n" Ansätze	Contenu suffisant pour "n" tests	Contenido suficiente para <n> ensayos</n>	Contenuto sufficiente per "n" saggi
1	Storage Temperature	Lagerungstemperatur	Température de conservation	Temperatura de conservación	Temperatura di conservazione
	Expiration Date	Mindesthaltbarkeits-datum	Date limite d'utilisation	Fecha de caducidad	Data di scadenza
**	Legal Manufacturer	Hersteller	Fabricant	Fabricante	Fabbricante
Distributed by	Distributor	Vertreiber	Distributeur	Distribuidor	Distributore
Content	Content	Inhalt	Conditionnement	Contenido	Contenuto
Volume/No.	Volume / No.	Volumen/Anzahl	Volume/Quantité	Volumen/Número	Volume/Quantità