

Revised 27 May 2011 rm (Vers. 2.1)

For Veterinary Use Only

Please use only the valid version of the package insert provided with the kit.

INTENDED USE

The Insulin (Equine) ELISA provides a method for the quantitative determination of insulin in equine serum and plasma.

SUMMARY AND EXPLANATION OF THE TEST

Insulin is the principal hormone responsible for the control of glucose metabolism. It is synthesised in the β -cells of the islets of Langerhans as the precursor, proinsulin, which is processed to form C-peptide and insulin. Both are secreted in equimolar amounts into the portal circulation. The mature insulin molecule comprises two polypeptide chains, the A chain and the B chain. The two chains are linked together by two inter-chain disulphide bridges. There is also an intra-chain disulphide bridge in the A chain.

Secretion of insulin is mainly controlled by plasma glucose concentration, and the hormone has a number of important metabolic actions. Its principal function is to control the uptake and utilisation of glucose in peripheral tissues via the glucose transporter. This and other hypoglycaemic activities, such as the inhibition of hepatic gluconeogenesis and glycogenolysis are counteracted by the hyperglycaemic hormones including glucagon, epinephrine (adrenaline), growth hormone and cortisol.

Matching energy intake with the energy expenditure is important for the exercising horse (1-2).Parameters such as the hormones ghrelin, adiponectin and insulin have shown to play a major role in mediating the energy balance either through their effects on feed intake or metabolic regulation. Glucose and insulin responses are modified by the diet and obesity, exercise level and stress also alters glucose and insulin metabolism (1-3).

PRINCIPLE OF THE PROCEDURE

The Insulin (Equine) ELISA is a solid phase two-site enzyme immunoassay. It is based on the direct sandwich technique in which two monoclonal antibodies are directed against separate antigenic determinants on the insulin molecule.

During incubation, insulin in the sample reacts with peroxidase-conjugated anti-insulin antibodies and anti-insulin antibodies bound to the microplate. After a simple washing step that removes unbound enzyme labelled antibody, the bound conjugate is detected by reaction with 3,3'-5,5'-tetramethylbenzidine (TMB). The reaction is stopped by the addition of acid, giving a colorimetric endpoint that can be read spectrophotometrically.

WARNINGS AND PRECAUTIONS

- The content of this kit and their residues must not be allowed to come into contact with ruminating animal or swine.
- \circ The Stop Solution in this kit contains 0.5 M H₂SO₄. Follow routine precautions for handling hazardous chemicals.
- All patient samples should be handled as capable of transmitting infections.

MATERIAL REQUIRED BUT NOT PROVIDED

 Pipettes for 25, 50, 100, 200 and 1000 μL (repeat pipettes preferred for addition of enzyme conjugate solution, Substrate TMB and Stop Solution)

DRG International Inc., USA

Fax: (908) 233-0758 • E-mail: corp@drg-international.com • Web: www.drg-international.com

Revised 27 May 2011 rm (Vers. 2.1)

For Veterinary Use Only

- Beakers and cylinders for reagent preparation
- Redistilled water
- Microplate reader (450 nm filter)
- Plate shaker (The recommended velocity is 700-900 cycles per minute, orbital movement)
- Microplate washing device

REAGENTS

Each Insulin (Equine) ELISA kit contains reagents for 96 wells, sufficient for 42 samples and one standard curve in duplicate. For larger series of assays, use pooled reagents from packages bearing identical lot numbers.

The expiry date for the complete kit is stated on the outer label.

The recommended storage temperature is 2-8°C.

Coated Plate	1 plate	96 wells	Ready for use	
Mouse monoclonal anti-insulin.		8-well strips	•	
For unused microplate strips, res	seal the bag using	ng adhesive tape,	store at 2-8°C and use within 8 weeks.	
Calibrators 1, 2, 3, 4, 5	5 vials	1000 μL	Ready for Use	
Color coded yellow.				
Porcine insulin.				
Concentration stated on vial lab	el.			
Calibrator 0	1 vial	5 mL	Ready for use	
Color coded yellow.				
Enzyme Conjugate 11X	1 vial	1.3 mL	Preparation, see below	
Peroxidase conjugated mouse m	onoclonal anti-	insulin.		
Enzyme Conjugate Buffer	1 vial	13 mL	Ready for use	
Color coded blue.				
Wash Buffer 21X	1 bottle	50 mL	Dilute with 1000 mL redistilled water	
Storage after dilution: 2-8°C for 8 weeks.			to make wash buffer.	
Substrate TMB	1 bottle	22 mL	Ready for use	
TMB Colorless solution.				
Note! Light sensitive!				
Stop Solution	1 vial	7 mL	Ready for use	
0.5 M H ₂ SO ₄				

DRG International Inc., USA

Fax: (908) 233-0758 • E-mail: corp@drg-international.com • Web: www.drg-international.com

Revised 27 May 2011 rm (Vers. 2.1)

For Veterinary Use Only

Preparation of enzyme conjugate 1X solution

Prepare the needed volume of enzyme conjugate 1X solution by dilution of Enzyme Conjugate 11X,(1+10) in Enzyme Conjugate Buffer according to the table below. Mix gently.

When preparing enzyme conjugate solution for the whole plate or if the reagents are to be used within 2 weeks, pour all of the Enzyme Conjugate Buffer into the Enzyme Conjugate 11X vial.

Number of strips	Enzyme Conjugate 11X	Enzyme Conjugate Buffer
12 strips	1 vial	1 vial
8 strips	700 µL	7 mL
6 strips	500 μL	5 mL
4 strips	400 µL	4 mL

Storage after dilution: 2-8°C for 2 weeks.

SPECIMEN COLLECTION AND HANDLING

Serum

Collect blood by venipuncture, allow to clot and separate the serum by centrifugation.

Samples can be stored at 2-8°C up to 24 hours. For longer periods, store samples at -20°C. Avoid repeated freezing and thawing.

Plasma

Collect blood by venipuncture into tubes containing heparin, citrate or EDTA as anticoagulant, and separate the plasma fraction.

Samples can be stored at 2-8°C up to 24 hours. For longer periods store samples at -20°C. Avoid repeated freezing and thawing.

PREPARATION OF SAMPLES

No dilution is normally required for serum or plasma.

All samples containing equine insulin above the highest standard should be diluted with Standard 0 or with Diabetes Sample Buffer REF 10-1195-01.

TEST PROCEDURE

All reagents and samples must be brought to room temperature before use. Perform each determination in duplicate for standards and unknowns. Prepare a standard curve for each assay run.

1. Prepare enzyme conjugate 1X solution (according to the table on previous page) and wash buffer.

2.

DRG[®] Insulin (Equine) ELISA (EIA-4746)

- 3. Pipette 25 µL each of Calibrators and samples into appropriate wells.
- 4. Add 100 µL of enzyme conjugate 1X solution into each well.
- 5. Incubate on a plate shaker (700-900 rpm) for 2 hours at room temperature (18-25°C).
- 6. Wash 6 times with 700 μL wash buffer 1X solution per well with an automatic plate washer. with overflow-wash function, after final wash, invert and tap the plate firmly against absorbent paper. Do not include soak step in washing procedure.

Or manually,

Discard the reaction volume by inverting the microplate over a sink. Add 350 μ L wash solution to each well. Discard the wash solution, tap firmly several times against absorbent paper to remove excess liquid. Repeat 5 times. <u>Avoid prolonged soaking during washing procedure.</u>

- 7. Add 200 µL Substrate TMB into each well.
- 8. Incubate for 15 minutes at room temperature (18-25°C).
- Add 50 μL Stop Solution to each well.
 Place the plate on the shaker for approximately 5 seconds to ensure mixing.
- 10. Read optical density at 450 nm and calculate results. Read within 30 minutes.

Note! To prevent contamination between the conjugate and substrate, separate pipettes are recommended.

INTERNAL QUALITY CONTROL

Commercial control and/or internal serum pools with low, intermediate and high equine insulin concentrations should routinely be assayed as unknowns, and results charted from day to day.

It is good laboratory practice to record the following data for each assay: kit lot number; dilution and/or reconstitution dates of kit components; OD values for the blank, Calibratorss and controls.

CALCULATION OF RESULTS

Computerized calculation

The concentration of equine insulin is obtained by computerized data reduction of the absorbance for the Standards, except Standard 0, versus the concentration using cubic spline regression.

Manual calculation

- 1. Plot the absorbance values obtained for the Standards, except Standard 0, against the equine insulin concentration on a lin-lin paper and construct a standard curve.
- 2. Read the concentration of the unknown samples from the standard curve.

DRG International Inc., USA

Fax: (908) 233-0758 • E-mail: corp@drg-international.com • Web: www.drg-international.com

For Veterinary Use Only

Revised 27 May 2011 rm (Vers. 2.1)

For Veterinary Use Only

Wells	Identity	A_{450}	Mean conc. µg/l
1A-B	Calibrator 0	0.054/0.053	
1C-D	Calibrator 1	0.090/0.086	
1E-F	Calibrator 2	0.135/0.133	
1G-H	Calibrator 3	0.319/0.329	
2A-B	Calibrator 4	0.907/0.880	
2C-D	Calibrator 5	2.405/2.304	
2E-F	Unknown 1	0.184/0.185	0.079
2G-H	Unknown 2	0.571/0.560	0.290
3A-B	Unknown 3	1.597/1.543	0.977

Example of results

LIMITATIONS OF THE PROCEDURE

Grossly lipemic, icteric or haemolyzed samples do not interfere in the assay.

Insulin is, however, degraded over time in hemolyzed samples. The degradation could give falsely low values and contributes to higher inter assay variation.

EXPECTED VALUES

Good practice dictates that each laboratory establishes its own expected range of values.

PERFORMANCE CHARACTERISTICS

Detection limit

Detection limit is defined as the Capability of Detection according to ISO11843-Part 1. Capability of Detection should be seen as part of a method validation, rather than the lowest concentration that can be measured.

The detection limit is 0.01 (μ g/L) determined with the methodology described in ISO11843-Part 4. Concentration of samples with absorbance below Calibrator 1 should not be calculated, instead expressed as less or equal to (\leq) the concentration indicated on the vial for Calibrator 1.

Recovery

Recovery upon addition is 102 - 125 % (mean 115 %). Recovery upon dilution is 78 - 93 % (mean 86 %).

DRG International Inc., USA

Revised 27 May 2011 rm (Vers. 2.1)

For Veterinary Use Only

Hook effect

Samples with a concentration of up to 1000 µg/L can be measured without giving falsely low results.

Precision

Each sample was analyzed in 4-replicates on 20 different occasions.

Sample	Mean value (µg/L)	Coefficient of variation		
		within assay %	between assay %	total assay %
1	0.075	3.4	4.2	4.4
2	0.300	3.0	4.3	4.5
3	0.921	3.2	1.9	2.5

Specificity

The following cross reactions have been found:

Porcine Insulin	100%
Porcine C-peptide	< 0.001 %
Porcine Proinsulin	< 0.2 %
Human Insulin	28 %
Human C-peptide	< 0.01 %
Human Proinsulin	< 0.1 %
NovoRapid	0.7 %
Levemir	< 0.0000002 %
Lantus	5.4 %
Humalog	< 0.0000006 %

CALIBRATION

The Insulin (Equine) ELISA is calibrated against an inhouse reference preparation of porcine insulin.

WARRANTY

The performance data presented here was obtained using the procedure indicated. Any change or modification in the procedure not recommended by DRG may affect the results, in which event DRG disclaims all warranties expressed, implied or statutory, including the implied warranty of merchantability and fitness for use. DRG and its authorized distributors, in such event, shall not be liable for damages indirect of consequential.

DRG International Inc., USA

Revised 27 May 2011 rm (Vers. 2.1)

For Veterinary Use Only

REFERENCES / LITERATURE

- 1. Jansson A, Nyman S, Lindholm A, Lindberg JE (2002) Effects on exercise metabolism of varying starch and sugar proportions. Equine Vet J Suppl 34:17-21
- 2. Gordon ME, McKeever KH, Betros CL, Helio C, Filho M (2007) Exercise-induced alterations in plasma concentrations of ghrelin, adiponectin, glucose, insulin, and cortisol in horses. Vet J 173(3):532-40
- 3. Ralston SL (2002) Insulin and glucose regulation. Vet Clin North Am Equine Pract 18:295

Version 2011-05-24~rm