1 NAME AND INTENDED USE
ENA Screen is an indirect solid phase enzyme immunoassay (ELISA) for the qualitative screening of IgG class autoantibodies against extractable nuclear antigens (ENA) in human serum or plasma. The assay is intended for in vitro use only as an aid in the diagnosis of rheumatic diseases such as systemic lupus erythematosus (SLE), Sjögren’s syndrome, scleroderma and mixed connective tissue disease.

2 SUMMARY AND EXPLANATION OF THE TEST
Rheumatoid autoimmune diseases are often associated with the occurrence of autoantibodies against several nuclear or cytoplasmatic antigens. These so-called anti nuclear antigens (ANA) can be divided into three groups:
1. true anti nuclear antigens (ANA): directed against dsDNA, ssDNA, histones, nucleolic RNA and DNP
2. extractable nuclears antigens: Sm (Smith), n-RNP, Scl 70, Jo-1 and PM-1
3. cytoplasmatic antigens: SS-A (Ro) and SS-B (La)
In patients with Sjögren-Syndrome antibodies against the two cytoplasmatic antigens often occur in combination. Due to their strong association of SS-A and SS-B antibodies to the HLA-DR3 and DR2 phenotypes a genetic predisposition is suspected. The anti SS-A protein passes the placenta and may cause the development of SLE in neonates.
Immunoreactive proteins may occur in various combinations and also bound to 'host proteins' of viral origin. They induce synthesis of polyclonal autoantibodies, of the IgG, IgM and IgA class of immunoglobulins. Especially for mixed connective tissue diseases a relation to viral infections by EBV (Eppstein-Barr-Virus) is indicated. Each class of immunoglobulins causes specific immune fluorescent pattern. Basically immunofluorescence titers correlate with the quantitation of IgG antibodies but the concentrations may considerably vary within each titer. Quantitation of IgG class antibodies extensively correlate with the diseases' activity. This makes it superior to immuno-fluorescence using HEP 2 cells, which may give variable results depending on their degree of activity. Also IF with Crithidia lucillae sometimes gives discrepant results.
Today the best investigated immunoreactive antigens are double-stranded DNA (dsDNA), single stranded DNA (ssDNA), Sm (Smith), sn-RNP (small nuclear ribonucleoprotein particles), the complex RNP/Sm which is stabilized by ribonuleic acid as well as SS-A (Ro) and SS-B (La). The antigen Scl 70, a 70 kD molecular weight protein is associated with scleroderma.
In rheumatoid autoimmune diseases various profiles of autoantibodies to these antigens can be detected. In a high incidence they are related to active and inactive systemic Lupus erythematodes, mixed connective tissue diseases (Sharp Syndrome), rheumatoid arthritis, Sjögren-Syndrome, Scleroderemia, photosensitive dermatitis and drug-induced lupus. In Lupus patients typically anti-dsDNA antibodies can be detected. Patients without these antibodies very often show anti-ssDNA antibodies and anti-SS-A and anti-SS-B are present. A strong correlation between antibody concentration and severity of the disease has been observed with higher antibody concentrations in active phases of the disease. Thus quantitation is more informative compared to simple titering by immunofluorescence.
Most of these parameters are not specific for just one disease but they occur in various combinations. The pattern of different antibody combinations and their concentration together with the whole clinical picture of the patient are helpful diagnostic tools in the assessment of rheumatoid autoimmune diseases.
The following graph gives brief information on the complexity of autoimmune diseases, occurring antibodies. It is not designed as a diagnostic schedule or program for ongoing diagnostic profiles:

<table>
<thead>
<tr>
<th>Diseases</th>
<th>dsDNA</th>
<th>ssDNA</th>
<th>Histone</th>
<th>SS-A (Ro)</th>
<th>SS-B (La)</th>
<th>Sm</th>
<th>RNP/Sm</th>
<th>Scl 70</th>
<th>Jo-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic Lupus erythematodes (SLE)</td>
<td>xxx</td>
<td>xx</td>
<td></td>
<td>x</td>
<td>x</td>
<td>xx</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Drug induced Lupus (LE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharp-Syndrome / Mixed connective tissue diseases</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>xx</td>
<td></td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
<td>x</td>
<td>xx</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjögren-Syndrome</td>
<td>x</td>
<td>x</td>
<td>xx</td>
<td>xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scleroderma</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
<td>x</td>
</tr>
<tr>
<td>Photosensitive Dermatitis Dermatomyositis</td>
<td>xx</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

3 PRINCIPLE OF THE TEST

A mixture of extractable nuclear antigens (SS-A (Ro), SS-B (La), Sm, RNP/Sm, Scl 70 and Jo-1) are bound to microwells. Antibodies to these antigens, if present in diluted serum, bind in the microwells. Washing of the microwells removes unbound serum antibodies. Horseradish peroxidase (HRP) conjugated anti-human IgG immunologically bind to the bound patient antibodies forming a conjugate/antibody/antigen complex. Washing of the microwells removes unbound conjugate. An enzyme substrate in the presence of bound conjugate hydrolyzes to form a blue color. The addition of an acid stops the reaction forming a yellow end-product. The intensity of this yellow color is measured photometrically at 450 nm. The amount of colour is directly proportional to the concentration of IgG antibodies present in the original sample.

4 WARNINGS AND PRECAUTIONS

1. All reagents of this kit are strictly intended for in vitro use only. In the United States, this kit is intended for Research Use Only.
2. Do not interchange kit components from different lots.
3. Components containing human serum were tested and found negative for HBsAg and HIV by FDA approved methods. No test can guarantee the absence of HBsAg or HIV, and so all human serum-based reagents in this kit must be handled as though capable of transmitting infection.
4. Avoid contact with the TMB (3,3´,5,5´-Tetramethyl-benzidine). If TMB comes into contact with skin, wash thoroughly with water and soap.
5. Avoid contact with the Stop Solution which contains hydrochloric acid (1 M). If it comes into contact with skin, wash thoroughly with water and seek medical attention.
6. Some kit components (i.e., Controls, Sample buffer and Buffered Wash Solution) contain Sodium Azide as preservative. Sodium Azide (NaN₃) is highly toxic and reactive in pure form. At the product concentrations, though not hazardous. Despite the classification as non-hazardous, we strongly recommend using prudent laboratory practices (see 8., 9., 10.)

7. Some kit components contain Proclin 300 as preservative. When disposing reagents containing Proclin 300, flush drains with copious amounts of water to dilute the components below active levels.

8. Wear disposable gloves while handling specimens or kit reagents and wash hands thoroughly afterwards.

9. Do not pipette by mouth.

10. Do not Eat, Drink, Smoke or Apply Makeup in areas where specimens or kit reagents are handled.

11. Avoid contact between the buffered Peroxide Solution and easily oxidized materials; extreme temperature may initiate spontaneous combustion.

Observe the guidelines for performing quality control in medical laboratories by assaying controls and/or pooled sera. During handling of all kit reagents, controls and serum samples observe the existing legal regulations.

5 CONTENTS OF THE KIT

Package size 96 determ.

Qty.1 Divisible microplate consisting of 12 modules of 8 wells each, coated with a mixture of highly purified extractable nuclear antigens (ENA): SS-A, SS-B, Sm, RNP/Sm, Scl 70 and Jo-1. Ready to use.

3 vials, 1.5 ml each Anti-ENA Controls in a serum/buffer matrix (PBS, BSA, NaN₃<0.1% (w/w)) Negative Control (A), Cut-Off Control (B), Positive Control (C). Ready to use

1 vial, 20 ml Sample buffer (Tris, NaN₃<0.1% (w/w)), yellow, concentrate (5x)

1 vial, 15 ml Enzyme conjugate solution (PBS, PROCLIN 300<0.5% (v/v)), (light red) containing polyclonal rabbit anti-human IgG; labelled with horseradish peroxidase. Ready to use

1 vial, 15 ml TMB substrate solution. Ready to use

1 vial, 15 ml Stop solution (1 M hydrochloric acid). Ready to use

1 vial, 20 ml Wash solution (PBS, NaN₃<0.1% (w/w)), concentrate (50x)

6 STORAGE AND STABILITY

Store the kit at 2-8°C
Keep microplate wells sealed in a dry bag with desiccants
The reagents are stable until expiration of the kit
Do not expose test reagents to heat, sun or strong light during storage and usage
Diluted sample buffer and wash buffer are stable for at least 30 days when stored at 2-8°C

7 MATERIALS REQUIRED

Equipment
- Microplate reader capable of endpoint measurements at 450 nm
- Multi-Channel Dispenser or repeatable pipet for 100 µl
- Vortex mixer
- Pipets for 10 µl, 100 µl and 1000 µl
- Laboratory timing device
- data reduction software

Preparation of reagents
- distilled or deionized water
- graduated cylinder for 100 and 1000 ml
- plastic container for storage of the wash solution

8 Specimen Collection, Storage and Handling
Collect whole blood specimens using acceptable medical techniques to avoid hemolysis. Allow blood to clot and separate the serum by centrifugation. Test serum should be clear and non-hemolyzed. Contamination by hemolysis or lipemia is best avoided, but does not interfere with this assay.

Specimens may be refrigerated at 2-8°C for up to five days or stored at -20°C up to six months. Avoid repetitive freezing and thawing of serum samples. This may result in variable loss of autoantibody activity. Testing of heat-inactivated sera is not recommended.

9 Procedural Notes
1. Do not use kit components beyond their expiration dates
2. Do not interchange kit components from different lots
3. All materials must be at room temperature (20-28°C)
4. Have all reagents and samples ready before start of the assay. Once started, the test must be performed without interruption to get the most reliable and consistent results.
5. Perform the assay steps only in the order indicated
6. Always use fresh sample dilutions
7. Pipette all reagents and samples into the bottom of the wells
8. To avoid carryover contamination change the tip between samples and different kit controls
9. It is important to wash microwells thoroughly and remove the last droplets of wash buffer to achieve best results.
10. All incubation steps must be accurately timed
11. Control sera or pools should routinely be assayed as unknowns to check performance of the reagents and the assay.
12. Do not re-use microplate wells

For all controls, the respective concentrations are provided on the labels of each vial. Using these concentrations a calibration curve may be calculated to read off the patient results semi-quantitatively.

10 Preparation of Reagents
Preparation of sample buffer
Dilute the contents of each vial of the sample buffer concentrate (5x) with distilled or deionized water to a final volume of 100 ml prior to use. Store refrigerated: stable at 2-8°C for at least 30 days after preparation or until the expiration date printed on the label.

Preparation of wash solution

Dilute the contents of each vial of the buffered wash solution concentrate (50x) with distilled or deionized water to a final volume of 1000 ml prior to use. Store refrigerated: stable at 2-8°C for at least 30 days after preparation or until the expiration date printed on the label.

Sample preparation

Dilute all patient samples 1:100 with sample buffer before assay. Therefore combine 10 µl of sample with 990 µl of sample buffer in a polystyrene tube. Mix well.

Controls are ready to use and need not be diluted.

11 TEST PROCEDURE

1. Prepare a sufficient number of microplate modules to accommodate controls and prediluted patient samples.
2. Pipet 100 µl calibrators, controls and prediluted patient samples in duplicate into the wells.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C1</td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C1</td>
<td>P4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C2</td>
<td>P5</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>C2</td>
<td>P6</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>C3</td>
<td>P..</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>P2</td>
<td></td>
</tr>
</tbody>
</table>

3. Incubate for 30 minutes at room temperature (20-28°C)
4. Discard the contents of the microwells and wash 3 times with 300 µl of wash solution.
5. Dispense 100 µl of enzyme conjugate into each well
6. Incubate for 15 minutes at room temperature
7. Discard the contents of the microwells and wash 3 times with 300 µl of wash solution
8. Dispense 100 µl of TMB substrate solution into each well
9. Incubate for 15 minutes at room temperature
10. Add 100 µl of stop solution to each well of the modules and incubate for 5 minutes at room temperature
11. Read the optical density at 450 nm and calculate the results. Bi-chromatic measurement with a reference at 600-690 nm is recommended.

The developed colour is stable for at least 30 minutes. Read optical densities during this time.
Automation
The ENA Screen ELISA is suitable for use on open automated ELISA processors. The test procedure detailed above is appropriate for use with or without automation.

12 INTERPRETATION OF RESULTS

Quality Control
This test is only valid if the optical density at 450 nm for Negative Control (A), Cut-Off Control (B) and Positive Control (C) complies with the respective range indicated on the Quality Control Certificate enclosed to each test kit! If any of these criteria is not met, the results are invalid and the test should be repeated.

Qualitative interpretation of results
Evaluation of the ENA Screen test is easily carried out by direct comparison of the optical density of each patient sample with the optical density of the Cut-Off Control.

Patient samples exhibiting optical densities higher than the optical density of the Cut-Off Control are considered to be positive.

Negative: OD Patient < OD Cut-Off Control
Positive: OD Patient ≥ OD Cut-Off Control

Semi-quantitative interpretation of results
For detailed quantification of the results, each patient-OD value can be expressed by the "Index Value". The Index Value is calculated by dividing the patient-OD by the Cut-Off-OD.

<table>
<thead>
<tr>
<th>ENA Screen (Index Value)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative:</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Positive:</td>
<td>≥ 1.0</td>
</tr>
</tbody>
</table>

The calculation of Index Values is not influenced by variations of the sample-OD and/or Cut-Off-OD. Index Values are recommended for long term validations (i.e. internal quality control samples). Due to additive effects of each of the six antigens, sera with positive results in the ENA Screen test may be determined as negative using an ENAcombi or quantitative Anti-ENA tests. Further differentiation and typing should be carried out by using an ENAcombi test or quantitative Anti-ENA test kits.

Calculation Example
The table shows typical results for ENAscreen. These data are intended for illustration only and should not be used to calculate results from another run.
13 PERFORMANCE CHARACTERISTICS

Precision (Reproducibility)
Statistics for Coefficients of variation (CV) were calculated for each of four samples from the results of 21 determinations in a single run for Intra-Assay precision. Run-to-run precision was calculated from the results of 5 different runs with 5 determinations of each sample:

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mean (Index Value)</th>
<th>CV [%]</th>
<th>Sample No.</th>
<th>Mean (Index Value)</th>
<th>CV [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17</td>
<td>6.0</td>
<td>1</td>
<td>0.18</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>1.02</td>
<td>2.2</td>
<td>2</td>
<td>1.07</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>2.20</td>
<td>1.6</td>
<td>3</td>
<td>2.43</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>5.70</td>
<td>0.9</td>
<td>4</td>
<td>4.32</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Specificity
The microplate is coated with a mixture of the antigens SS-A (Ro), SS-B (La), Sm, RNP/Sm, Scl 70 and Jo-1, highly purified by affinity chromatography.
The ENA Screen test is specific only for autoantibodies directed to these antigens. No cross reactivities have been observed.

Calibration
The assay system is calibrated against the internationally recognized reference sera from CDC, Atlanta USA, since no other international standards are available.

14 LIMITATIONS OF PROCEDURE
Not all patients with SLE, Sjögren’s syndrome or connective tissue disease are positive for antibodies against ENAs
The ENA Screen ELISA is a diagnostic aid and by itself is not diagnostic. A definite clinical diagnosis should not be based on the results of a single test, but should be made by the physician after all clinical and laboratory findings have been evaluated.
15 INTERFERING SUBSTANCES

No interference has been observed with haemolytic (up to 1000 mg/dL), lipemic (up to 3 g/dL triglycerides) or bilirubin (up to 40 mg/dL) containing sera. Nor have any interfering effects been observed with the use of anticoagulants. However for practical reasons it is recommended that grossly hemolyzed or lipemic samples be avoided.

16 REFERENCES