

C E Revised 25 Jan. 2007 (Vers. 1.1)

INTENDED USE

The DRG dsDNA ELISA test system is a semi-quantitative immunoassay for the detection of IgG antibodies to double stranded DNA (dsDNA) in human sera. When performed according to these instructions, the results of this autoantibody ELISA may aid in the diagnosis and treatment of autoimmune connective tissue disorders. This device is for *in vitro* diagnostic use.

DRG[®] dsDNA ELISA (EIA-2774)

SIGNIFICANCE AND BACKGROUND

In recent years it has become clear that autoantibodies to a number of nuclear constituents have proven to be useful in the diagnosis of various connective tissue diseases. Native DNA or dsDNA antibodies are highly specific for active systemic lupus erythematosus (SLE) and correlates closely with the onset of lupus nephritis ⁽¹⁾. Antibodies directed against the Sm marker are highly specific for patients with SLE and are considered a diagnostic criterion for SLE ^(1,2). The presence of high level RNP antibodies alone are considered diagnostic of mixed connective tissue disease (MCTD) and are usually associated with a more benign disease course ⁽³⁾; while patients with low levels of RNP antibodies, together with other autoantibodies, may be observed in the serum of patients with progressive systemic sclerosis, Sjögren's Syndrome, and rheumatoid arthritis. The presence of RNP antibodies in the serum of SLE patients is usually associated with a lower incidence of renal involvement and a more benign disease course. To the contrary, patients with Sm antibodies experience a higher frequency of renal and central nervous system complications ⁽⁴⁾. Autoantibodies are frequently present in the serum of ANA negative SLE patients, such as subacute cutaneous lupus erythematosus ⁽¹¹⁾, a lupus-like syndrome associated with a homozygous C2 deficiency ⁽¹²⁾, and in a subset of patients who lack anti-dsDNA antibodies ⁽¹⁰⁾.

Scl-70 antibodies are highly specific for scleroderma $^{(10)}$. They are also observed in a minority of SLE patients. Scl-70 positive scleroderma patients tend to have a more severe disease course, more internal organ involvement and diffuse rather than limited skin involvement $^{(13)}$. Scl-70 antibodies are rarely found in other autoimmune diseases, and thus, their detection in a patient with the recent onset of Raynaud's phenomenon is highly significant $^{(14)}$.

The relative frequency of these autoantibodies in association with SLE and other connective tissue diseases either singly, or as multiple autoantibodies, requires an autoantibody profile assessment of each patient's serum in order to obtain the highest degree of clinical relevance in the laboratory workup of these types of patients. Until recently, autoantibodies were tested individually by indirect immunofluorescence, Ouchterlony gel diffusion, hemagglutination, radioimmunoassay, or enzyme-linked immunosorbent assay (ELISA). The following table summarizes the various autoantibodies noted above with respect to disease association:

	Table 1 (15)								
Antibody	Disease State	Relative Frequency of Antibody Detection *.							
Anti-dsDNA	SLE	40-60*							
Anti-Sm	SLE	30*							
Anti-RNP	MCTD, SLE	100 ** and <40, respectively							
Anti-SSA (Ro)	SLE, Sjogren's	15 and 30-40, respectively							
Anti-SSB (La)	SLE, Sjogren's	15 and 60-70, respectively							
Anti-Scl-70	Systemic Sclerosis	20-28*							

(15)

*Highly Specific

** Highly specific when present alone at high titer.

1

C E Revised 25 Jan. 2007 (Vers. 1.1)

(6

2

IVD

PRINCIPLE OF THE ELISA ASSAY

The DRG dsDNA ELISA test system is designed to detect IgG class antibodies in human sera to purified double stranded DNA. The test procedure involves three incubation steps:

- 1. Test sera (properly diluted) are incubated in a series of microwells coated with purified dsDNA. If present in patient sera, specific antibodies will bind to the immobilized antigen. The plate is washed to remove unbound antibody and other serum components.
- 2. Peroxidase conjugated goat anti-human IgG (γ chain specific) is added to the wells and the plate is incubated. The conjugate will react with IgG antibody immobilized on the solid phase in step 1. The wells are washed to remove unreacted conjugate.
- 3. The microwells containing immobilized peroxidase conjugate are incubated with peroxidase substrate solution. Hydrolysis of the substrate by peroxidase produces a color change. After a period of time, the reaction is stopped and the color intensity of the solution is measured photometrically. The color intensity of the solution depends upon the antibody concentration in the test sample.

MATERIALS PROVIDED

Each kit contains the following components in sufficient quantities to perform the number of tests indicatee on packaging label.

- 1. Plate. 96 wells configured in twelve 1x8 well strips coated with inactivated antigen. The strips are packaged in a strip holder and sealed in an envelope with desiccant.
- 2. Conjugate. Conjugated (horseradish peroxidase) goat anti-human IgG (y chaing specific). Ready to use. One, 15 ml vial with a white cap. Preservative added.
- 3. Positive Control (Human Serum). One, 0.35 mL vial with a red cap. Preservative added.
- 4. Calibrator (Human Serum). One, 0.5 ml vial with a blue cap. Preservative added.
- 5. Negative Control (Human Serum). One, 0.35 ml vial with a green cap. Preservative added.
- 6. Sample diluent. One 30 ml bottle (green cap) containing Tween-20, bovine serum albumin and phosphate-buffered-saline, (pH 7.2 +/- 0.2). Green solution ready to use. Note: Shake Well Before Use. Preservative added.
- 7. TMB: One 15 ml amber bottle (amber cap) containing 3,3',5,5'-tetramethylbenzidine (TMB). Ready to use. Contains DMSO $\leq 15\%$ (w).
- 8. Stop solution: One 15 ml bottle (red cap) containing 1M H₂SO₄, 0.7M HCI. Ready to use.
- 9. Wash buffer concentrate (10X): dilute 1 part concentrate + 9 parts deionized or distilled water. One 100 ml bottle (clear cap) containing a 10X concentrated phosphate-buffered-saline and Tween-20 solution (blue solution). Contains preservative. NOTE: 1X solution will have a pH of 7.2 +/- 0.2.

PRECAUTIONS

- 1. For in vitro diagnostic use.
- 2. Normal precautions exercised in handling laboratory reagents should be followed. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. Wear suitable protective clothing, gloves, and eye/face protection. Do not breathe vapor. Dispose of waste observing all local, state, and federal laws.

DRG International Inc., USA

C E Revised 25 Jan. 2007 (Vers. 1.1)

- IVD
- 3. The wells of the ELISA plate do not contain viable antigens. However, the strips should be considered **POTENTIALLY BIOHAZARDOUS MATERIALS** and handled accordingly. at the end of the days run.
- 4. The human serum controls are **POTENTIALLY BIOHAZARDOUS MATERIALS**. Source materials from which these products were derived were found negative for HIV-1 antigen, HBsAg and for antibodies against HCV and HIV by approced test methods. However, since no test method can offer complete assurance that infectious agents are absent, these products should be handled at the Biosafety Level 2 as recommended for any potentially infectious human serum or blood specimen in the Centers for Disease Control/National Institutes of Health manual "Biosafety in Microbiological and Biomedical Laboratories": current edition; and OSHA's Standard for Bloodborne Pathogens (18).
- 5. Adherence to the specified time and temperature of incubations is essential for accurate results. All reagents must be allowed to reach room temperature (20-25°C) before starting the assay. Return unused reagents to refrigerated temperature immediately after use.
- 6. Improper washing could cause false positive or false negative results. Be sure to minimize the amount of any residual wash solution; (e.g., by blotting or aspiration) before adding Conjugate or Substrate. Do not allow the wells to dry out between incubations.
- 7. The human serum controls, sample diluent, conjugate, and wash buffer concentrate contain a preservative, thimerosal, 0.04% w/v) which may be toxic if ingested
- 8. The Stop Solution is TOXIC. Causes burns, Toxic by inhalation, in contact with skin and if swallowed. In case of accident or if you feel unwell, seek medical advice immediately.
- 9. The TMB Solution is HARMFUL. Irritating to eyes, respiratory system and skin.
- 10. The Wash Buffer concentrate is an IRRITANT. Irritating to eyes, respiratory system and skin.
- 11. Wipe bottom of plate free of residual liquid and/or fingerprints which can alter optical density (OD) readings.
- 12. Dilution or adulteration of these reagents may generate erroneous results.
- 13. Reagents from other sources or manufacturers should not be used.
- 14. TMB Solution should be colorless, very pale yellow, very pale green, or very pale blue when used. Contamination of the TMB with conjugate or other oxidants will cause the solution to change color prematurely. Do not use the TMB if it is noticeably blue in color. To help reduce the possibility of contamination, refer to Test Procedure, Substrate Incubation section to determine the amount of TMB to be used.
- 15. Never pipette by mouth. Avoid contact of reagents and patient specimens with skin or mucous membranes.
- 16. Avoid microbial contamination of reagents. Incorrect results may occur.
- 17. Cross contamination of reagents and/or samples could cause erroneous results.
- 18. Reusable glassware must be washed out and thoroughly rinsed free of all detergents.
- 19. Avoid splashing or generation of aerosols.
- 20. Do not expose reagents to strong light during storage or incubation.
- 21. Allowing the microwell strips to equilibrate to room temperature prior to opening the protective envelope will protect the wells from condensation.
- 22. Wash solution should be collected in a disposal basin. Treat the waste solution with 10% household bleach (0.5% sodium hypochlorite). Avoid exposure of reagents to bleach fumes.
- 23. Caution:Liquid waste at acid pH should be neutralized before adding to bleach solution.
- 24. Do not use ELISA plate if the indicator strip on the desiccant pouch has turned from blue to pink.
- 25. Do not allow the conjugate to come in contact with containers or instruments that may have previously contained a solution utilizing sodium azide as a preservative. Residual amounts of sodium azide may destroy the conjugate's enzymatic activity.

C E Revised 25 Jan. 2007 (Vers. 1.1)

26. Do not expose any of the reactive reagents to bleach-containing solutions, or to any strong odors from bleachcontaining solutions. Trace amounts of bleach (sodium hypochlorite) may destroy the biological activity of many of the reactive reagents within this kit.

MATERIALS REQUIRED BUT NOT PROVIDED

- ELISA microwell reader capable of reading at a wavelength of 450nm.
- Pipettes capable of accurately delivering 10 and 200µL.
- Multichannel pipette capable of accurately delivering (50-200ul).
- Reagent reservoirs for multichannel pipettes.
- Wash bottle or microwell washing system.
- Distilled or deionized water.
- One liter graduated cylinder.
- Serological pipettes.
- Disposable pipette tips.
- Paper towels
- Laboratory timer to monitor incubation steps.
- Disposal basin and disinfectant. (example: 10% household bleach, 0.5% sodium hypochlorite.)

STORAGE CONDITIONS

- 1. Store the unopened kit between 2 and 8°C.
- 2. Coated microwell strips: Store between 2 and 8°C. Extra strips should be immediately resealed with desiccant and returned to proper storage. Strips are stable for 60 days after the envelope has been opened and properly resealed and the indicator remains blue.
- 3. Conjugate: Store between 2-8°C. DO NOT FREEZE.
- 4. Calibrator, Positive Control and Negative Control: Store between 2 and 8°C.
- 5. TMB Store between 2 and 8°C.
- 6. Wash Buffer concentrate (10X): Store between 2 and 25°C. Diluted wash buffer (1X) is stable at room temperature (20 to 25°C) for up to 7 days or for 30 days between 2 and 8°C.
- 7. Sample Diluent: Store between 2 and 8°C.
- 8. Stop Solution: Store between 2 and 25°C.

SPECIMEN COLLECTION

- 1. It is recommended tha tpsecimen collection be carried out in accordance with NCCLS document M29: <u>Protection of</u> <u>Laboratory Workers from Infectious Disease</u>.
- 2. No known test method can offer complete assurance that human blood samples will not transmit infection. Therefore, all blood derivatives should be considered potentially infectious.
- 3. Only freshly drawn and properly refrigerated sera obtained by approved aseptic venipuncture procedures should be used in this assay (16,17). No anticoagulants or preservatives should be added. Avoid using hemolyzed, lipemic, or bacterially contaminated sera.
- 4. Store sample at room temperature for no longer than 8hours. If testing is not performed within 8 hours, sera may be stored between 2 and 8°C for no longer than 48 hours. If delay in testing is anticipated, store test sera at -20°C or lower. Avoid multiple freeze/thaw cycles that may cause loss of antibody activity and give erroneous results.

CE

Revised 25 Jan. 2007 (Vers. 1.1)

GENERAL PROCEDURE

- 1. Remove the individual kit components from storage and allow them to warm to room temperature (20-25°C).
- Determine the total number of samples and controls to be tested. Allow six Control/Calibrator determinations (one Blank, one Negative Control, three Calibrators and one Positive Control) per run. A Reagent Blank should br un on each assay. Check software and reader requirements for the correct Controls/Calibrator configurations. Return unused strips to the resealable pouch with desiccant, seal, and return to storage between 2 and 8°C.

	EXAMPLE PLATE SET-UP								
	1	2							
А	Blank	Patient 3							
В	Neg. Control	Patient 4							
С	Calibrator	Etc.							
D	Calibrator								
Е	Calibrator								
F	Pos. Control								
G	Patient 1								
Н	Patient 2								

- 3. Prepare a 1:21 dilution e.g.: 10 uL of serum + 200ul of Sample Diluent. NOTE: Shake Well Before Use) of the Negative Control, Calibrator, Positive Control, and each patient serum.
- 4. To individual wells, add 100 ul of each diluted control, calibrator and sample. Ensure that the samples are properly mixed. Use a different pipette tip for each sample.
- 5. Add 100 ul of Sample Diluent to well A1 as a reagent blank. Check software and reader requirements for the correct reagent blank well configuration.
- 6. Incubate the plate at room temperature (20-25°C) for 25 ± -5 minutes.
- 7. Wash the microwell strips, 5X.

A. Manual Wash Procedure:

- a. Vigorously shake out the liquid from the wells.
- b. Fill each well with wash buffer. Make sure no air bubbles are trapped in the wells.
- c. Repeat steps a. and b. for a total of 5 washes.
- d. Shake out the wash solution from all the wells. Invert the plate over a paper towel and tap firmly to remove any residual wash solution from the wells. Visually inspect the plate to ensure that no residual wash solution remains. Collect wash solution in a disposable basin and treat with 0.5% sodium hypochlorite (bleach) at the end of the days run.

B. Automated Wash Procedure

If using an automated wash system, set the dispensing volume to $300-350\mu$ L/well. Set the wash cycle for 5 washes with no delay between washes. If necessary, the microwell plate may be removed from the washer, inverted over a paper towel and tapped firmly to remove any residual wash solution from the microwells.

- 8. Add 100μL of the TMB substrate solution to each well at the same rate and in the same order as the specimens were added.
- 9. Incubate the plate at room temperature (20-25°C) for 25 ± -5 minutes.

C E Revised 25 Jan. 2007 (Vers. 1.1)

- 10. Wash the microwells by following the procedure as described in step 7.
- 11. Add 100 ul of TMB to each well, including reagent blank well, at the same rate and in the same order as the specimens were added.
- 12. Incubate the plate at room temperature (20-25°C) for 10 to 15 minutes.
- 13. Stop the reaction by adding 50 ul of Stop Solution to each well, including reagent blank well, at the same rate and in the same order as the TMB was added. Positive samples will turn from blue to yellow. After adding the Stop Solution, tap the plate several times to ensure that the samples are thoroughly mixed.
- 14. Set the microplate reader wavelength at 450nm and measure the optical density (OD) of each well against the reagent blank. The plate should be read within 30 minutes after the addition of the Stop Solution.

QUALITY CONTROL

- 1. Each time the assay is run the Calibrator must be run in triplicate. A reagent blank, Negative Control, and Positive Control must also be included in each assay.
- 2. Calculate the mean of three Calibrator wells. If any of the three values differ by more than 15% from the mean, discard that value and calculate the mean using the remaining two wells.
- 3. The mean OD value for the Calibrator and the OD values fro the Positive and Negative Controls should fall with the following ranges:

	OD Range
Negative Control	<u>≤</u> 0.250
Calibrator	<u>> 0.300</u>
Positive Control	\geq 0.500

- a. The OD of the Negative Control divided by the mean OD of the Calibrator should be ≥ 0.9 .
- b. The OD of the Positive Control divided by the mean OD of the Calibrator should be ≥ 1.25 .
- c. If the above conditions are not met the test should be considered invalid and should be repeated.
- 4. The Positive Control and Negative Control are intended to monitor for substantial reagent failure and will not ensure precision at the assay cut-off.
- 5. Additional controls may be tested according to guidelines or requirements of local state, and or federal regulations or accrediting organizations.
- 6. Refer to NCCLS document C24: <u>Statistical Quality Control for Quantitative Measurements</u> for guidance on appropriate QC practices.

INTERPRETATION OF RESULTS

A. Calculations:

1. Correction Factor

A cutoff OD value for the positive samples has been determined by the manufacturer and correlated to the Calibrator. The correction factor (CF) will allow you to determine the cut-off value for positive samples and to correct for slight day-to-day variations in test results. The correction factor is determined for each lot of kit components and is printed on the data label located in the kit box.

C E Revised 25 Jan. 2007 (Vers. 1.1)

2. Cutoff OD Value

To obtain the cutoff OD value, multiply the CF by the mean OD of the Calibrator determined above. (CF x mean OD of Calibrator = cutoff OD Value)

3. Index Values or OD Ratios

Calculate the Index Value or OD Ratio for each specimen by dividing its OD value by the cutoff OD from Step 2.

Example:

Mean OD of Calibrator	=	0.793
Correction Factor (CF)	=	0.25
Cut off OD	=	$0.793 \ge 0.25 = 0.198$
Unknown Specimen OD	=	0.432
Specimen Index Value or OD Ratio	=	0.432 / 0.198 = 2.18

B. Interpretations:

Index Values or OD ratios are interpreted as follows:

	Index Value or OD Ratio
Negative Specimens	<u><</u> 0.90
Equivocal Specimens	0.91 to 1.09
Positive Specimens	<u>≥</u> 1.10

LIMITATION OF THE ASSAY

- 1. A diagnosis should not be made solely on the basis of the dsDNA ELISA test results.
- 2. Test results should be interpreted in conjunction with the clinical evaluation and the results of other diagnostic procedures.

EXPECTED VALUES

The expected value for a normal patient is a negative result. The number of reactives, and the degree of reactivity is dependent upon parameters such as population type being tested, treatment, etc. Each laboratory should establish their own expected values based upon the specimens typically being tested.

With respect to disease-state and percent reactivity, Table I in the **SIGNIFICANCE AND BACKGROUND** section of this package insert shows the relative frequency of autoantibody activity for various rheumatic disorders.

PERFORMANCE CHARACTERISTICS

Comparative Study:

A comparative study was performed to demonstrate the equivalence of the DRG[®] dsDNA ELISA to another commercially available dsDNA ELISA test system. The performance of the dsDNA ELISA was evaluated using 329 serum specimens; 152 normal donor samples from the northeastern and southeastern United States, and 177 disease-state repository samples previously characterized with respect to autoantibody activity. The results of the investigation have been summarized in Tables 1 and 2 below. Table 3 shows the performance of the assay using the World Health Organization standard (Wo/80) for dsDNA.

Table 1. Relative Sensitivity, n=177 Disease-State Specimens

Autoantigen	А	B	С	D	Sensitivity
dsDNA	41	81	40	47	41/47 = 87.2%
	_	- ~ ® -			

A- Number of specimens reactive on DRG[®] InternationalInc. Test System

B- Number of specimens reactive on commercial ELISA Test System.

C- Number of discrepant specimens.

D- Number of positive specimens in the population after resolution of the discrepant specimens using alternate methodology such as IFA, and third-party ELISA tests.

Table 2. Relative Specificity, n=152 Normal Donor Specimens.

Autoantigen	Ε	F	G	Н	Specificity
DsDNA	148	148	0	148	148/ 148 = 100%
			0		

E- Number of specimens non-reactive on DRG[®] International Inc. Test System

F- Number of specimens non-reactie on commercial ELISA Test System.

G- Number of discrepant specimens.

H- Number of non-reactive specimens in the population after resolution of the discrepant specimens using alternate methodology, such as IFA and third-party ELISA tests.

Table 3. Results with the Wo/80 Standard								
Dilution of Standard	Defined as: (IU/mL)	Result on DRG [®] Assay (IU/mL)						
Neat	200 IU/mL	186 IU/mL						
1:2	100 IU/mL	104 IU/mL						
1:4	50 IU/mL	58 IU/mL						

REPRODUCIBILITY

To assess the intra-assay and inter-assay variability of the test procedure, a strong positive, a low positive, and a negative sample was tested eleven times on each of three days. The mean unit value, the standard deviation, and the percent CV were calculated for each sample. The results of this study are depicted in Tables 3 to 6 below:

 Table 4. Inter-Assay Reproducibility, "High Positive" Specimen, dsDNA ELISA

	Day 1			Day 2			Day 3		
Antigen	Mean	SD	%CV	Mean	SD	%CV	Mean	SD	%CV
dsDNA	418	35	8	407	17	4	430	24	6

Table 5. Inter-Assay Reproducibility, "Low Positive" Specimen, dsDNA ELISA

	Day 1			Day 2			Day 3		
Antigen	Mean	SD	%CV	Mean	SD	%CV	Mean	SD	%CV

C E Revised 25 Jan. 2007 (Vers. 1.1)

Revised 25 Jan. 2007 (Vers. 1.1)									IVD	
	dsDNA	260	13	5	289	20	7	289	12	4

Table 6. Intra-Assay Reproducibility, Negative Specimen, dsDNA ELISA

	Day 1			Day 2			Day 3		
Antigen	Mean	SD	%CV	Mean	SD	%CV	Mean	SD	%CV
dsDNA	2	2	N/A	1	1	N/A	1	1	N/A

Table 7. Intra-Assay Reproducibility, dsDNA ELISA

	Day 1			Day 2			Day 3		
Antigen	Mean	SD	%CV	Mean	SD	%CV	Mean	SD	%CV
dsDNA	419	29	7	279	21	8	2	1	N/A

REFERENCES

- 1. Tan E, Cohen A, Fries J, et al:Special Article: The 1982 revised criteria for classification of systemic lupus erythematosus. Arthritis. Rheum. 25:1271-1277, 1982.
- 2. Beufels M, Kouki F, Mignon F, et al:Clinical significance of anti-Sm antibodies in systemic lupus erythematosus. Am. J. Med. 74:201-215, 1983.
- 3. Sharp GC, Irwin WS, Tan EM, Holman H:Mixed connective tissue disease. An apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am. J. Med. 52:148-159, 1972.
- 4. Winfield JB, Brunner CB, Koffler DB:Serological studies in patients with systemic lupus erythematosus and central nervous system dysfunction. Arthritis Rheum. 21:289-294, 1978.
- 5. Tan EM, Kunkel HG:Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J. Immunol. 96:464-471, 1966.
- Maddison PJ, Mogavero H, Provost TT, Reichlin M:The clinical significance of autoantibodies to soluble cytoplasmic antigen in systemic lupus erythematosus and other connective tissue diseases. J. Rheumatol. 6:189-192, 1979.
- 7. Clark G, Reichlin M, Tomasi TB:Characterization of soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythematosus. J. Immunol. 102:117, 1969.
- 8. Alexander E, Arnett FC, Provost TT, Stevens MB:The Ro(SSA) and LA(SSB) antibody system and Sjögren's syndrome. J. Rheum. 9:239-246, 1982.
- 9. Alspaugh MA, Talal N, and Tan E:Differentiation and characterization of autoantibodies and their antigens in Sjögren's syndrome. Arthritis Rheum. 19:216-222, 1976.
- 10. Tan EM: Antinuclear antibodies: Diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol. 44:93-151, 1989.
- 11. Sontheimer RD, Thomas JR, Gilliam JN: Subacute cutaneous lupus erythematosus: A cutaneous marker for a distinct lupus erythematosus subset. Arch. Derm. 115:1409-1415, 1979.
- 12. Provost TT, Arnett FC, Reichlin M: Homozygous C2 deficiency, lupus erythematosus and anti Ro(SSA) antibodies. Arth. Rheum. Vol. 26, No. 10:1279-1281, 1983.
- 13. LeRoy EC, Black CM, Fleishmajer R, et al:Scleroderma (systemic sclerosis): classification, subsets, and pathogenesis. J. Rheumatol. 15:202-205, 1988.
- 14. Weiner ES, Hildebrandt S, Senecal JL, et al: Prognostic significance of anticentromere antibodies and antitopoisomerase 1 antibodies in Raynaud's disease. A prospective study. Arthritis Rheum. 34: 68-77, 1991.
- 15. Mongey AB, Hess EV: Antinuclear antibodies and disease specificity. Advances in Int. Med. 36 (1): 151-169, 1989.

DRG International Inc., USA

Fax: (908) 233-0758 • E-mail: <u>corp@drg-international.com</u> • Web: <u>www.drg-international.com</u>

DRG ({

Revised 25 Jan. 2007 (Vers. 1.1)

- 16. Procedures for the collection of diagnostic blood specimens by venipuncture. 2nd edition. Approved Standard (1984). Published by National Committee for Clinical Laboratory Standards.
- 17. Procedures for the Handling and Processing of Blood Specimens. NCCLS Document H18-A, Vol. 10, No. 12, Approved Guideline, 1990.
- 18. Department of Labor, Occupational Safety and Health Administration: Occupational Exposure to Bloodborne Pathogens, Final Rule. Fed. Register 56:64175-64182, 1991.

ABBREVIATED TEST PROCEDURE

- 1. Dilute Serum 1:21
- 2. Add diluted serum to microwell 100 uL/Well
- 3. Incubate 20 to 30minutes.
- 4. Wash
- 5. Add Conjugate 100 uL/Well
- 6. Incubate 20 to 30 minutes
- 7. Wash
- 8. Add TMB 100 uL/Well
- 9. Incubate 10 to 15 minutes
- 10. Add Stop Solution 50 uL/Well-Mix
- 11. READ

Vers. 012507/pm ~sd

