

rat GM-CSF ELISA

Product Data Sheet

Cat. No.: RBMS633R

For Research Use Only

Page 1 of 28 VERSION 51 060708

CONTENTS

1.	INTENDED USE	3
2.	SUMMARY	3
3.	PRINCIPLES OF THE TEST	4
4.	REAGENTS PROVIDED	6
5.	STORAGE INSTRUCTIONS	7
6.	SPECIMEN COLLECTION	7
7.	MATERIALS REQUIRED BUT NOT PROVIDED	8
8.	PRECAUTIONS FOR USE	9
9.	PREPARATION OF REAGENTS	11
10.	TEST PROTOCOL	15
11.	CALCULATION OF RESULTS	20
12.	LIMITATIONS	23
13.	PERFORMANCE CHARACTERISTICS	24
14.	REFERENCES	26
15.	REAGENT PREPARATION SUMMARY	27
16.	TEST PROTOCOL SUMMARY	28

- This kit is manufactured by:
 BioVendor Laboratorní medicína, a.s.
- >> Use only the current version of Product Data Sheet enclosed with the kit!

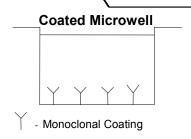
1 INTENDED USE

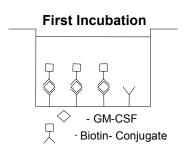
The rat GM-CSF ELISA is an enzyme-linked immunosorbent assay for quantitative detection of rat GM-CSF in cell culture supernatants, rat serum, plasma or other body fluids. The rat GM-CSF ELISA is for research use only. Not for use in diagnostic or therapeutic procedures.

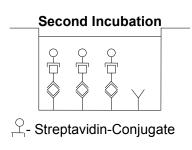
2 SUMMARY

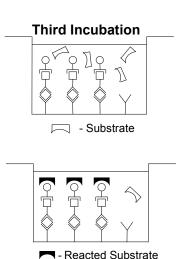
Granulocyte - macrophage colony - stimulating factor (GM-CSF) is a small glycoprotein growth factor which stimulates the production and function of neutrophils, eosinophils and monocytes (3) GM-CSF can be produced by a wide variety of tissue types, including fibroblasts, endothelial cells, T-cells, macrophages, mesothelial cells, epithelial cells and many types of tumor cells. In most of these tissues, inflammatory mediators, such as interleukin-1, interleukin-6, tumor necrosis, factor or endotoxin, are potent inducers of GM-CSF gene expression, which occurs at least partly by post-transcriptional nabilization of the GM-CSF mRNA.

The biological effects of GM-CSF are mediated through binding to cell surface receptors, which appear to be widely expressed by thermatopoietic cells and also by some non-thermatopoietic cells, such as endothelial cells. At least two different functional classes of GM-CSF receptor have been identified. The neutrophil GM-CSF receptor exclusively binds GM-CSF, while interleukin-3 competes for binding of GM-CSF to a second class of receptors detected on some leukemic cell lines (7).


3 PRINCIPLES OF THE TEST


An anti-rat GM-CSF monoclonal coating antibody is adsorbed onto microwells.


Rat GM-CSF present in the or standard to sample binds antibodies adsorbed to the microwells: biotin-conjugated monoclonal **GM-CSF** anti-rat antibody is added and binds to rat IFN γ captured by the first antibody.


Following incubation unbound biotin conjugated anti-rat GM-CSF is removed during a wash step. Streptavidin-HRP is added and binds to the biotin conjugated anti-rat GM-CSF. Following incubation unbound Streptavidin-HRP is removed during a wash step, and substrate solution reactive with HRP is added to the wells.

A coloured product is formed in proportion to the amount of rat GM-CSF present in the sample. The reaction is terminated by addition of acid and absorbance is measured at 450 nm. A standard curve is prepared from seven rat GM-CSF standard dilutions and rat GM-CSF sample concentration determined.

4 REAGENTS PROVIDED

- 1 aluminium pouche with a **Antibody Coated Microtiter Strips** with Monoclonal Antibody (mouse) to rat GM-CSF
- 1 vial (100 µl) **Biotin-Conjugate** anti-rat GM-CSF monoclonal antibody¹⁾
- 1 vial (150 µl) **Streptavidin-HRP**¹⁾
- 2 vials **rat GM-CSF Standard,** lyophilized, 1000 pg/ml upon reconstitution
- 1 vial (5 ml) **Assay Buffer Concentrate** 20x (PBS with 1 % Tween 20 and 10 % BSA)
- 1 bottle (50 ml) **Wash Buffer Concentrate** 20x (PBS with 1% Tween 20)
- 1 bottle (12 ml) Sample Diluent
- 1 vial (7 ml) **Substrate Solution I** (tetramethyl-benzidine)
- 1 vial (7 ml) **Substrate Solution II** (0.02 % buffered hydrogen peroxide)
- 1 vial (12 ml) **Stop Solution** (1M Phosphoric acid)
- 1 vial (0.4 ml) Blue-Dye
- 1 vial (0.4 ml) **Red-Dye**
- 1 vial (0.4 ml) Green-Dye
- 4 adhesive Plate Covers

Reagent Labels

¹⁾ It is recommended to spin vial in microcentrifuge before use to collect reagent at the bottom.

5 STORAGE INSTRUCTIONS

Store kit reagents between 2° and 8°C. Immediately after use remaining reagents should be returned to cold storage (2° to 8°C). Expiry of the kit and reagents is stated on labels.

The expiry of the kit components can only be guaranteed if the components are stored properly, and if, in case of repeated use of one component, the reagent is not contaminated by the first handling.

6 SPECIMEN COLLECTION

Cell culture supernatants, rat serum, plasma or other biological samples will be suitable for use in the assay. Remove serum from the clot or red cells, respectively, as soon as possible after clotting and separation.

Samples containing a visible precipitate must be clarified prior to use in the assay. Do not use grossly hemolyzed or lipemic specimens.

Clinical samples should be kept at 2° to 8°C and separated rapidly before storing at -20°C to avoid loss of bioactive rat GM-CSF. If samples are to be run within 24 hours, they may be stored at 2° to 8°C. Avoid repeated freeze-thaw cycles.

For stability and suitability of samples refer to respective chapter.

7 MATERIALS REQUIRED BUT NOT PROVIDED

- 5 ml and 10 ml graduated pipettes
- 10 μl to 1,000 μl adjustable single channel micropipettes with disposable tips
- 50 μl to 300 μl adjustable multichannel micropipette with disposable tips
- Multichannel micropipette reservoir
- Beakers, flasks, cylinders necessary for preparation of reagents
- Device for delivery of wash solution (multichannel wash bottle or automatic wash system)
- Microwell strip reader capable of reading at 450 nm (620 nm as optional reference wave length)
- Glass-distilled or deionized water
- Statistical calculator with program to perform linear regression analysis

8 PRECAUTIONS FOR USE

- All chemicals should be considered as potentially hazardous. We therefore recommend that this product is handled only by those persons who have been trained in laboratory techniques and that it is used in accordance with the principles of good laboratory practice. Wear suitable protective clothing such as laboratory overalls, safety glasses and gloves. Care should be taken to avoid contact with skin or eyes. In the case of contact with skin or eyes wash immediately with water. See material safety data sheet(s) and/or safety statements(s) for specific advice.
- Reagents are intended for research use only and are not for use in diagnostic or therapeutic procedures.
- Do not mix or substitute reagents with those from other lots or other sources.
- Do not use kit reagents beyond expiration date on label.
- Do not expose kit reagents to strong light during storage or incubation.
- Do not pipette by mouth.
- Do not eat or smoke in areas where kit reagents or samples are handled.
- Avoid contact of skin or mucous membranes with kit reagents or specimens.
- Rubber or disposable latex gloves should be worn while handling kit reagents or specimens.
- Reagents containing thimerosal as preservative may be toxic if ingested.

- Avoid contact of substrate solutions with oxidizing agents and metal.
- Avoid splashing or generation of aerosols.
- In order to avoid microbial contamination or cross-contamination of reagents or specimens which may invalidate the test use disposable pipette tips and/or pipettes.
- Use clean, dedicated reagent trays for dispensing the conjugate and substrate reagents.
- Exposure to acids will inactivate the conjugate.
- Glass-distilled water or deionized water must be used for reagent preparation.
- Substrate solutions must be at room temperature prior to use.
- Decontaminate and dispose specimens and all potentially contaminated materials as if they could contain infectious agents. The preferred method of decontamination is autoclaving for a minimum of 1 hour at 121.5°C.
- Liquid wastes not containing acid and neutralized waste may be mixed with sodium hypochlorite in volumes such that the final mixture contains 1.0 % sodium hypochlorite. Allow 30 minutes for effective decontamination. Liquid waste containing acid must be neutralized prior to the addition of sodium hypochlorite.

A. Wash Buffer

If crystals have formed in the Wash Buffer Concentrate, warm it gently until they have completely dissolved.

Pour entire contents (50 ml) of the **Wash Buffer Concentrate** into a clean 1,000 ml graduated cylinder. Bring final volume to 1,000 ml with glass-distilled or deionized water. Mix gently to avoid foaming. The pH of the final solution should adjust to 7.4.

Transfer to a clean wash bottle and store at 2° to 25°C. Please note that the Wash Buffer is stable for 30 days. Wash Buffer may be prepared as needed according to the following table:

Number	Wash Buffer	Distilled
of Strips	Concentrate (ml)	Water (ml)
1 - 6	25	475
1 - 12	50	950

B. Assay Buffer

Mix the contents of the bottle well. Add contents of **Assay Buffer** Concentrate (5.0 ml) to 95 ml distilled or deionized water and mix gently to avoid foaming. Store at 2° to 8°C. Please note that the Assay Buffer is stable for 30 days. Assay Buffer may be prepared as needed according to the following table.

Number	Assay Buffer	Distilled
of Strips	Concentrate (ml)	Water (ml)
1 - 6	2.5	47.5
1 - 12	5.0	95.0

C. Preparation of Biotin-Conjugate

Make a 1:100 dilution of the concentrated **Biotin Conjugate** with **Assay Buffer** in a clean plastic tube as needed according to the following table:

Number	Biotin-Conjugate	Assay Buffer
of Strips	(ml)	(ml)
1 - 6	0.03	2.97
1 - 12	0.06	5.94

D. Preparation of rat GM-CSF Standard

Reconstitute rat GM-CSF **Standard** by addition of distilled water. Refer to the Certificate of Analysis for current volume of Distilled water needed for reconstitution of standard. Mix gently to ensure complete solubilization.

E. Preparation of Streptavidin-HRP

Make a 1:200 dilution of the concentrated **Streptavidin-HRP** solution in **Assay Buffer** as needed according to the following table:

Number	Streptavidin-HRP	Assay Buffer
of Strips	(ml)	(ml)
1 - 6	0.03	5.97
1 - 12	0.06	11.84

F. TMB Substrate Solution

Using clean pipettes and containers known to be metal free, dispense an equal volume of **Substrate Solution I** into **Substrate Solution II** and swirl gently to mix. The TMB Substrate Solution may develop a yellow tinge over time. This does not seem to affect product performance. A blue colour present in the TMB Substrate Solution, however, indicates that it has been contaminated and must be discarded. The TMB Substrate Solution must be used within a few minutes after mixing. Warm to room temperature before use. Avoid direct exposure of TMB reagents to intense light and oxidizing agents during storage or incubation.

Substrate preparation according to assay size:

Number	Substrate	Substrate
of Strips	Solution I (ml)	Solution II (ml)
1 - 6	3.0	3.0
1 - 12	6.0	6.0

G. Addition of Colour-giving Dyes

This procedure is optional, does not in any way interfere with the test results, and is designed to help the customer with the performance of the test, but can also be omitted, just following the instruction booklet.

Alternatively, the dye solutions from the stocks provided (*Blue-Dye*, *Green-Dye*, *Red-Dye*) can be added to the reagents according to the following guidelines:

1. Diluent:

Before sample dilution add the **Blue-Dye** at a dilution of 1:250 (see table below) to the appropriate diluent (1x) according to the test protocol. After addition of Blue-Dye, proceed according to the instruction booklet.

5 ml Diluent	20 μl Blue-Dye
12 ml Diluent	48 µl Blue-Dye

2. Biotin-Conjugate: Before dilution of the concentrated conjugate, add the Green-Dye at a dilution of 1:100 (see table below) to the Assay Buffer (1x) used for the final conjugate dilution. Proceed after addition of Green-Dye according to the instruction booklet, preparation of Biotinconjugate.

3 ml Assay Buffer	30 µl Green-Dye
6 ml Assay Buffer	60 µl Green-Dye

3. Streptavidin-HRP: Before dilution of the concentrated Streptavidin-HRP, add the **Red-Dye** at a dilution of 1:250 (see table below) to the Assay Buffer (1x) used for the final Streptavidin-HRP dilution. Proceed after addition of Red-Dye according to the instruction booklet, preparation of Streptavidin-HRP.

6 ml Assay Buffer	24 μl Red-Dye
12 ml Assay Buffer	48 μΙ Red-Dye

- a. Prepare reagents immediately before use and mix them thoroughly without foaming.
- b. Determine the number of Microwell Strips required to test the desired number of samples plus appropriate number of wells needed for running blanks and standards. Each sample, standard, blank and optional control sample should be assayed in duplicate. Remove sufficient **Microwell Strips coated with Monoclonal Antibody** (mouse) to rat GM-CSF from their aluminium pouches immediately prior to use. Load them into the 96 microwell strip holder making sure to place the first microwell strip into row 1.
- c. Wash the microwell strips twice with approximately 300 µl **Wash Buffer** per well with thorough aspiration of microwell contents between washes. Take care not to scratch the surface of the microwells.
 - After the last wash, empty wells and tap microwell strips on absorbent pad or paper towel to remove excess Wash Buffer. Use the microwell strips immediately after washing or place upside down on a wet absorbent paper for not longer than 15 minutes. Do not allow wells to dry.
- d. Add 100 µl of **Sample Diluent** in duplicate to all standard wells. Prepare standard dilutions by pipetting 100 µl of reconstituted (Refer to preparation of reagents) **rat GM-CSF Standard**, in duplicate, into wells A1 and A2. Mix the contents of wells A1 and A2 by repeated aspiration and ejection, and transfer 100 µl to well B1 and B2, respectively. Take care not to scratch the inner surface of the microwells. Continue this procedure five times, creating two rows of rat GM-CSF standard dilutions ranging from 500 to 15.6 pg/ml. Discard 100 µl of the contents from the last microwells (G1, G2) used.

Figure 1. Preparation of rat GM-CSF standard dilutions:

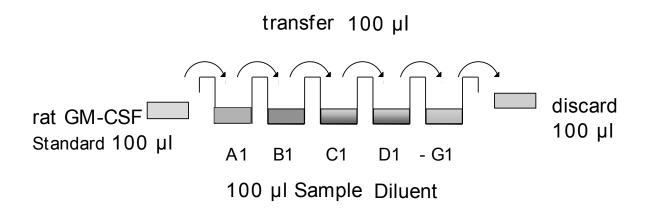


Figure 2. Diagram depicting an example of the arrangement of blanks, standards and samples in the microwell strips:

	1	2	3	4
A	Standard 1 (500 pg/ml)	Standard 1 (500 pg/ml)	Sample 1	Sample 1
В	Standard 2 (250 pg/ml)	Standard 2 (250 pg/ml)	Sample 2	Sample 2
С	Standard 3 (125 pg/ml)	Standard 3 (125 pg/ml)	Sample 3	Sample 3
D	Standard 4 (63 pg/ml)	Standard 4 (63 pg/ml)	Sample 4	Sample 4
E	Standard 5 (31.3 pg/ml)	Standard 5 (31.3 pg/ml)	Sample 5	Sample 5
F	Standard 6 (15.6 pg/ml)	Standard 6 (15.6 pg/ml)	Sample 6	Sample 6
G	Standard 7 (7.8 pg/ml)	Standard 7 (7.8 pg/ml)	Sample 7	Sample 7
Н	Blank	Blank	Sample 8	Sample 8

- e. Add 100 µl of Sample Diluent, in duplicate, to the blank wells.
- f. Add 50 μl of **Sample Diluent** to the sample wells.
- g. Add 50 µl of each **Sample**, in duplicate, to the designated wells.
- h. Prepare **Biotin-Conjugate** (Refer to preparation of reagents).
- Add 50 μl of diluted **Biotin-Conjugate** to all wells, including the blank wells.
- j. Cover with a **Plate Cover** and incubate at room temperature (18° to 25°C) for 2 hours, if available on a microplate shaker set at 200 rpm.
- k. Remove Plate Cover and empty wells. Wash microwell strips 3 times according to point c. of the test protocol. Proceed immediately to the next step.
- I. Prepare **Streptavidin-HRP** (Refer to preparation of reagents).
- m. Add 100 µl of diluted **Streptavidin-HRP** to all wells, including the blank wells.
- m. Cover with a **Plate Cover** and incubate at room temperature (18° to 25°C) for 1 hour, if available on a microplate shaker at 200 rpm.
- n. Prepare **TMB Substrate Solution** a few minutes prior to use (Refer to preparation of reagents).
- p. Remove Plate Cover and empty wells. Wash microwell strips 3 times according to point c. of the test protocol. Proceed immediately to the next step.
- q. Pipette 100 μ l of mixed **TMB Substrate Solution** to all wells, including the blank wells.

r. Incubate the microwell strips at room temperature (18° to 25°C) for about 10 minutes on a microplate shaker at 200 rpm. Avoid direct exposure to intense light. The point at which the substrate reaction need to be stopped is often determined by the ELISA reader being used. Many ELISA readers record absorbance only up to 2.0 O.D. The colour development on the plate should be monitored and the substrate reaction stopped (see point s. of this protocol) before positive wells are no longer properly recordable.

It is recommended to add the stop solution when the highest standard has developed a dark blue colour.

Alternatively the colour development can be monitored by the ELISA reader at 620 nm. The substrate reaction should be stopped as soon as an OD of 0.6 - 0.65 is reached.

- s. Stop the enzyme reaction by quickly pipetting 100 µl of **Stop Solution** into each well, including the blank wells. It is important that the Stop Solution is spread quickly and uniformly throughout the microwells to completely inactivate the enzyme. Results must be read immediately after the Stop Solution is added or within one hour if the microwell strips are stored at 2 8°C in the dark.
- t. Read absorbance of each microwell on a spectro-photometer using 450 nm as the primary wave length (optionally 620 nm as the reference wave length; 610 nm to 650 nm is acceptable). Blank the plate reader according to the manufacturer's instructions by using the blank wells. Determine the absorbance of both, the samples and the rat GM-CSF standards.

Note: In case of incubation without shaking the obtained O.D. values may be lower than indicated below. Nevertheless the results are still valid.

11 CALCULATION OF RESULTS

- Calculate the average absorbance values for each set of duplicate standards and samples. Duplicates should be within 20 per cent of the mean.
- Create a standard curve by plotting the mean absorbance for each standard concentration on the ordinate against the rat GM-CSF concentration on the abscissa. Draw a best fit curve through the points of the graph.
- To determine the concentration of circulating rat GM-CSF for each sample, first find the mean absorbance value on the ordinate and extend a horizontal line to the standard curve. At the point of intersection, extend a vertical line to the abscissa and read the corresponding rat GM-CSF concentration.


Samples have been diluted 1:2, thus the concentration read from the standard curve must be multiplied by the dilution factor (x2).*

Note: Calculation of samples with an O.D. exceeding 2.0 may result in incorrect, low rat GM-CSF levels. Such samples should be re-analyzed at higher dilution rate in order to precisely quantitate the actual rat GM-CSF level

- It is suggested that each testing facility establishes a control sample of known rat GM-CSF concentration and runs this additional control with each assay. If the values obtained are not within the expected range of this control, the assay results may be invalid.
- A representative standard curve is shown in Figure 3. This curve cannot be used to derive test results. Every laboratory must prepare a standard curve for each group of microwell strips assayed.

Figure 3. Representative standard curve for rat GM-CSF ELISA. Rat GM-CSF was diluted in serial two-fold steps in Sample Diluent, symbols represent the mean of three parallel titrations.

Do not use this standard curve to derive test results. A standard curve must be run for each group of microwell strips assayed.

Typical data using the rat GM-CSF ELISA

Measuring wavelength: 450 nm Reference wavelength: 620 nm

Standard	rat GM-CSF Concentration (pg/ml)	O.D. (450 nm)	O.D. Mean	C.V. (%)
1	500	2.145	2.172	1.2
	500	2.198		
2	250	0.972	1.034	6.0
	250	1.095		
3	125	0.428	0.439	2.5
	125	0.450		
4	62.5	0.224	0.222	1.1
	62.5	0.219		
5	31.3	0.116	0.114	1.8
	31.3	0.112		
6	15.6	0.067	0.065	3.1
	15.6	0.063		
7	7.8	0.041	0.040	3.8
	7.8	0.038		
Blank		0.013	0.014	
		0.014		
· · · · · · · · · · · · · · · · · · ·	-			

12 LIMITATIONS

- Since exact conditions may vary from assay to assay, a standard curve must be established for every run.
- Bacterial or fungal contamination of either samples or reagents or cross-contamination between reagents may cause erroneous results.
- Disposable pipette tips, flasks or glassware are preferred, reusable glassware must be washed and thoroughly rinsed of all detergents before use.
- Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results. Completely empty wells before dispensing fresh Wash Buffer, fill with Wash Buffer as indicated for each wash cycle and do not allow wells to sit uncovered or dry for extended periods.

A. Sensitivity

The limit of detection of rat GM-CSF defined as the analyte concentration resulting in an absorption significantly higher than that of the dilution medium (mean plus two standard deviations) was determined to be 3.5 pg/ml (mean of 6 independent assays).

B. Reproducibility

a. Intra-assay

Reproducibility within the assay was evaluated in independent experiments. The overall intra-assay coefficient of variation has been calculated to be <5%.

b. Inter-assay

Assay to assay reproducibility within one laboratory was evaluated in independent experiments by three technicians. The overall inter-assay coefficient of variation has been calculated to be <10%.

C. Spiking Recovery

The spiking recovery was evaluated by spiking four levels of rat GM-CSF into pooled normal murine serum. Recoveries were determined in two independent experiments with 4 replicates each. Observed values showed an overall mean recovery of 85%.

D. Dilution Linearity

Murine serum spiked with different levels of rat GM-CSF was assayed at four serial twofold dilutions with 4 replicates each. Experiments showed an overall mean recovery of 108 %.

E. Sample Stability

a. Freeze-Thaw Stability

Aliquots of spiked serum were stored frozen at –20°C and thawed up to 5 times, and rat GM-CSF levels determined. There was no significant loss of GM-CSF by freezing and thawing up to 5 times.

b. Storage Stability

Aliquots of spiked serum were stored at -20°C, 2-8°C, room temperature (RT) and at 37°C, and the rat GM-CSF level determined after 24 h. There was no significant loss of rat GM-CSF immunoreactivity during storage at -20°C, 4°C, room temperature and 37°C.

F. Specificity

The interference of circulating factors of the immune systems was evaluated by spiking these proteins at physiologically relevant concentrations into a rat GM-CSF positive serum. There was no detectable cross reactivity.

G. Expected Serum Values

There are no detectable rat GM-CSF levels found in healthy rats. Elevated rat GM-CSF levels depend on the type of immunological disorder.

14 REFERENCES

- 1) Burgess AW, Metcalf D. The nature and action of granulocyte-macrophage colony stimulating factors.Blood 1980 Dec;56(6):947-58
- 2) Freund M, Kleine HD. The role of GM-CSF in infection. 1992;20 Suppl 2:S84-92 Review.
- Griffin JD, Cannistra SA, Sullivan R, Demetri GD, Ernst TJ, Kanakura Y. The biology of GM-CSF: regulation of production and interaction with its receptor. Int J Cell Cloning 1990 Jan;8 Suppl 1:35-44; discussion 44-5.
- 4) Harousseau JL, Wu D. The use of GM-CSF and G-CSF in the treatment of acute leukemias.Leuk Lymphoma. 1995 Aug;18(5-6):405-12. Review.
- 5) Ottmann OG, Hoelzer D. Do G-CSF and GM-CSF contribute to the management of acute lyphoblastic leukemia? Leukemia. 1996 Jul;10(7):1111-6. Review. No abstract available.
- 6) Ross SD, DiGeorge A, Connelly JE, Whiting GW, McDonnell N. Safety of GM-CSF in patients with AIDS: a review of the literature. Pharmacotherapy. 1998 Nov-Dec;18(6):1290-7 Review.
- 7) Xing Z, Braciak T, Ohkawara Y, Sallenave JM, Foley R, Sime PJ, Jordana M, Graham FL, Gauldie J. Gene transfer for cytokine functional studies in the lung: the multifunctional role of GM-CSF in pulmonary inflammation. J Leukoc Biol. 1996 Apr;59(4):481-8. Review

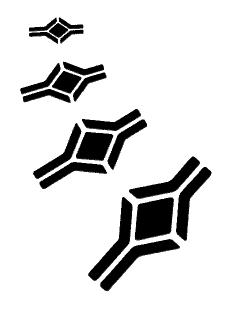
15 REAGENT PREPARATION SUMMARY

A. Wash Buffer	Add Wash Buffer Concentrate 20 x (50 ml) to 950 ml distilled water			
B. Assay Buffer	Number of Strips	Assay Buffer Concentrate (ml)	Distilled Water (ml)	
	1 - 6	2.5	47.5	
	1 - 12	5.0	95.0	
C. Biotin-Conjugate	Make a 1:100 d	dilution according to	the table.	
	Number of Strips	Biotin-Conjugate (ml)	Assay Buffer (ml)	
	1 - 6	0.03	2.97	
	1 - 12	0.06	5.94	
D. Standard		at GM-CSF Standa Reconstitution volu standard vial.		
E. Streptavidin-HRP	Number	Streptavidin-HRP	Assay Buffer	
	of Strips	(ml)	(ml)	
	1 - 6	0.03	5.97	
	1 - 12	0.06	11.84	
F. TMB Substrate Solution	Number of Strips 1 - 6	Substrate Solution I (ml) 3.0	Substrate Solution II (ml) 3.0	
		5.5	5.5	

1 - 12

6.0

6.0


- Wash microwell strips twice with Wash Buffer
- Add 100 µl **Sample Diluent**, in duplicate, to all standard wells
- Pipette 100 μl diluted **rat GM-CSF Standard** into the first wells and create standard dilutions ranging from 500 to 7.8 pg/ml by transferring 100 μl from well to well. Discard 100 μl from the last wells.
- Add 100 µl **Sample Diluent**, in duplicate, to the blank wells
- Add 50 µl **Sample Diluent**, in duplicate, to the sample wells
- Add 50 μl **Sample**, in duplicate, to designated wells
- Prepare Biotin-Conjugate
- Add 50 µl of diluted **Biotin-Conjugate** to all wells
- Cover microwell strips and incubate 2 hours at room temperature (18° to 25°C), if available on a microplate shaker
- Prepare Streptavidin-HRP
- Empty and wash microwell strips 3 times with **Wash Buffer**
- Add 100 µl of diluted **Streptavidin-HRP** to all wells
- Cover microwell strips and incubate 1 hour at room temperature (18° to 25°C), if available on a microplate shaker
- Prepare **TMB Substrate Solution** few minutes prior to use
- Empty and wash microwell strips 3 times with Wash Buffer
- Add 100 µl of mixed TMB Substrate Solution to all wells including blank wells
- Incubate the microwell strips for about 10 minutes at room temperature (18°to 25°C), if available on a microplate shaker
- Add 100 µl Stop Solution to all wells including blank wells
- Blank microwell reader and measure colour intensity at 450 nm

Note: Calculation of samples with an O.D. exceeding 2.0 may result in incorrect, low rat GM-CSF levels. Such samples should be re-analyzed at higher dilution rate in order to precisely quantitate the actual rat GM-CSF level.

NOTES

Page 27 of 28

HEADQUARTERS: BioVendor Laboratorní medicína, a.s.	CTPark Modrice Evropska 873	664 42 Modrice CZECH REPUBLIC	Phone: Fax:	+420-549-124-185 +420-549-211-460	E-mail:info@biovendor.com Web:www.biovendor.com
EUROPEAN UNION: BioVendor GmbH	Im Neuenheimer Feld 583	D-69120 Heidelberg GERMANY	Phone: Fax:	+49-6221-433-9100 +49-6221-433-9111	E-mail: infoEU@biovendor.com
USA, CANADA AND MEXICO: BioVendor LLC	1463 Sand Hill Road Suite 227	Candler, NC 28715 USA	Phone: Fax:	+1-828-670-7807 +1-800-404-7807 +1-828-670-7809	E-mail: infoUSA@biovendor.com
CHINA - Hong Kong Office: BioVendor Laboratories Ltd	Room 4008 Hong Kong Plaza, No.188	Connaught Road West Hong Kong, CHINA	Phone: Fax:	+852-2803-0523 +852-2803-0525	E-mail: infoHK@biovendor.com
CHINA – Mainland Office: BioVendor Laboratories Ltd	Room 2405 YiYa Tower TianYu Garden, No.150	Lihe Zhong Road Guang Zhou, CHINA	Phone: Fax:	+86-20-8706-3029 +86-20-8706-3016	E-mail: infoCN@biovendor.com

Page 28 of 28 VERSION 51 060708