

KO601 Anti Human CD44 ICD (intracellular domain) Polyclonal Antibody

Code No.KO601CategoryCancerTargetCD44

Type Polyclonal Antibody

Concentration 0.25mg/ml

Contents (Volume) 200µg (800µL/vial)

Gene ID 960 Primary Source CD44

Synonyms IN; LHR; MC56; MDU2; MDU3; MIC4; Pgp1; CDW44; CSPG8; HCELL; HUTCH-I; ECMR-III; MGC10468; CD44

Immunogen Partial peptide of Human CD44 (DQFMTADETRNLQNVDMKIGV)

Raised inRabbitPurificationProteinGSourceRabbit SerumCross ReactivityNot TestedLabelUnlabeled

Buffer PBS [containing 2% Block Ace as a stabilizer, 0.1% Proclin as a bacteriostat]

Storage Store below –20°C. Once thawed, store at 4°C. Repeated freeze-thaw cycles should be avoided.

Application IHC,ICC,WB,IP,IF

Recommended Antibody Dilutions

ELISA	WB	IHC	ICC
Not Tested	15-20	100-150	100-150
IP	FCM	IF	Neutralization
15-20	Not Tested	100-150	Not Tested

(µg/mL)

The data is provided from Division of Gene Regulation Institute for Advanced Medical Research School of Medicine, Keio Univ., Japan

UniPlot Summary	Function Receptor for hyaluronic acid (HA). Mediates cell-cell and cell-matrix interactions through its affinity for HA, are		
_	possibly also through its affinity for other ligands such as osteopontin, collagens, and matrix metalloproteinases (MMPs).		
	Adhesion with HA plays an important role in cell migration, tumor growth and progression. Also involved in lymphocyte		
	activation, recirculation and homing, and in hematopoiesis. Altered expression or dysfunction causes numerous		
	pathogenic phenotypes. Great protein heterogeneity due to numerous alternative splicing and post-translational		
	modification events.		
	//Subcellular location Membrane; Single-pass type I membrane protein.		
	//Tissue specificity Isoform 10 (epithelial isoform) is expressed by cells of epithelium and highly expressed by carcinomas.		
	Expression is repressed in neuroblastoma cells.		
	//Sequence similarities Contains 1 Link domain.		
Reference 1)	Okamoto I, et al: Oncogene (1999) 18:1435-1446		
2)	Okamoto I, et al: J Biol Chem (1999) 36: 25525-25534		
3)	Kawano Y, et al: J Biol Chem (2000) 38: 29628-29635		
4)	Okamoto I, et al: J Cell Biol (2001) 155: 755-762		
5)	Murakami D, et al., Oncogene (2003) 22:1511-1516		
6)	Nagano O, et al., J Cell Biol (2004) 165: 893-902		
7)	Takahashi E, et al., J Biol Chem. (2010) 285: 4060-73.		